Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 2, Pages 310–321
DOI: https://doi.org/10.7868/S0044466915020167
(Mi zvmmf10160)
 

This article is cited in 14 scientific papers (total in 14 papers)

Domain decomposition method for a model crack problem with a possible contact of crack edges

E. M. Rudoyab

a Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent’eva 15, Novosibirsk, 630090, Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
References:
Abstract: The scalar Poisson equation is considered in a domain having a cut with unilateral constraints specified on its edges. An iterative method is proposed for solving the problem. The method is based on domain decomposition and the Uzawa algorithm for finding a saddle point of the Lagrangian. According to the method, the original domain is divided into two subdomains and a linear problem for Poisson’s equation is solved in each of them at every iteration step. The solution in one domain is related to that in the other by two Lagrange multipliers: one is used to match the solutions, and the other, to satisfy the unilateral constraint. Examples of the numerical solution of the problem are given.
Key words: scalar Poisson equation, theory of cracks, unilateral constraint, domain decomposition method, Lagrange multipliers, Uzawa algorithm.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00017
13-08-01097
Received: 24.06.2014
Revised: 05.08.2014
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 2, Pages 305–316
DOI: https://doi.org/10.1134/S0965542515020165
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: E. M. Rudoy, “Domain decomposition method for a model crack problem with a possible contact of crack edges”, Zh. Vychisl. Mat. Mat. Fiz., 55:2 (2015), 310–321; Comput. Math. Math. Phys., 55:2 (2015), 305–316
Citation in format AMSBIB
\Bibitem{Rud15}
\by E.~M.~Rudoy
\paper Domain decomposition method for a model crack problem with a possible contact of crack edges
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 2
\pages 310--321
\mathnet{http://mi.mathnet.ru/zvmmf10160}
\crossref{https://doi.org/10.7868/S0044466915020167}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3317885}
\elib{https://elibrary.ru/item.asp?id=22908473}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 2
\pages 305--316
\crossref{https://doi.org/10.1134/S0965542515020165}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350801800015}
\elib{https://elibrary.ru/item.asp?id=24011342}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924159554}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10160
  • https://www.mathnet.ru/eng/zvmmf/v55/i2/p310
  • This publication is cited in the following 14 articles:
    1. T. S. Popova, “Numerical Solution of the Equilibrium Problem for a Two-dimensional Elastic Body with a Delaminated Rigid Inclusion”, Lobachevskii J Math, 45:11 (2024), 5402  crossref
    2. E. M. Rudoy, H. Itou, N. P. Lazarev, “Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem”, J. Appl. Industr. Math., 15:1 (2021), 129–140  mathnet  crossref  crossref  elib
    3. Y. Kanno, “An accelerated Uzawa method for application to frictionless contact problem”, Optim. Lett., 14:7 (2020), 1845–1854  crossref  isi
    4. Nyurgun P. Lazarev, Vladimir V. Everstov, Natalya A. Romanova, “Fictitious domain method for equilibrium problems of the Kirchhoff–Love plates with nonpenetration conditions for known configurations of plate edges”, Zhurn. SFU. Ser. Matem. i fiz., 12:6 (2019), 674–686  mathnet  crossref
    5. R. V. Namm, G. I. Tsoy, G. Woo, “Modified Lagrange functional for solving elastic problem with a crack in continuum mechanics”, Commun. Korean Math. Soc., 34:4 (2019), 1353–1364  crossref  isi
    6. R. V. Namm, G. I. Tsoi, “Solution of a contact elasticity problem with a rigid inclusion”, Comput. Math. Math. Phys., 59:4 (2019), 659–666  mathnet  crossref  crossref  isi  elib
    7. Robert Namm, Georgiy Tsoy, Ellina Vikhtenko, Communications in Computer and Information Science, 974, Optimization and Applications, 2019, 35  crossref
    8. Robert Namm, Georgiy Tsoy, Communications in Computer and Information Science, 1090, Mathematical Optimization Theory and Operations Research, 2019, 536  crossref
    9. E. M. Rudoy, N. P. Lazarev, “Domain decomposition technique for a model of an elastic body reinforced by a Timoshenko's beam”, J. Comput. Appl. Math., 334 (2018), 18–26  crossref  mathscinet  zmath  isi
    10. N. A. Kazarinov, E. M. Rudoy, V. Yu. Slesarenko, V. V. Shcherbakov, “Mathematical and numerical simulation of equilibrium of an elastic body reinforced by a thin elastic inclusion”, Comput. Math. Math. Phys., 58:5 (2018), 761–774  mathnet  mathnet  crossref  crossref  isi  scopus
    11. E. M. Rudoy, N. A. Kazarinov, V. Yu. Slesarenko, “Numerical simulation of the equilibrium of an elastic two-layer structure with a crack”, Num. Anal. Appl., 10:1 (2017), 63–73  mathnet  crossref  crossref  mathscinet  isi  elib
    12. E. M. Rudoy, V. V. Shcherbakov, “Domain decomposition method for a membrane with a delaminated thin rigid inclusion”, Sib. elektron. matem. izv., 13 (2016), 395–410  mathnet  crossref
    13. E. M. Rudoy, “Numerical solution of an equilibrium problem for an elastic body with a delaminated thin rigid inclusion”, J. Appl. Industr. Math., 10:2 (2016), 264–276  mathnet  crossref  crossref  mathscinet  elib
    14. E. M. Rudoy, “Numerical solution of an equilibrium problem for a membrane with a delaminated thin rigid inclusion”, All-Russian Conference on Nonlinear Waves: Theory and New Applications (Wave16), Journal of Physics Conference Series, 722, IOP Publishing Ltd, 2016, UNSP 012033  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:542
    Full-text PDF :165
    References:89
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025