Abstract:
The local dynamics of the logistic delay equation with a large spatially distributed control coefficient is asymptotically studied. The basic bifurcation scenarios are analyzed depending on the relations between the parameters of the equation. It is shown that the equilibrium states can lose stability even for asymptotically small values of the delay parameter. The corresponding critical cases can have an infinite dimension. Special nonlinear parabolic equations are constructed whose nonlocal dynamics determine the local behavior of solutions to the original boundary value problem.
Key words:
dynamics of the logistic delay equation, spatially distributed control, bifurcation, asymptotic methods, parabolic equations.
Citation:
I. S. Kashchenko, S. A. Kashchenko, “Dynamics of the logistic delay equation with a large spatially distributed control coefficient”, Zh. Vychisl. Mat. Mat. Fiz., 54:5 (2014), 766–778; Comput. Math. Math. Phys., 54:5 (2014), 785–796
\Bibitem{KasKas14}
\by I.~S.~Kashchenko, S.~A.~Kashchenko
\paper Dynamics of the logistic delay equation with a large spatially distributed control coefficient
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2014
\vol 54
\issue 5
\pages 766--778
\mathnet{http://mi.mathnet.ru/zvmmf10031}
\crossref{https://doi.org/10.7868/S0044466914050123}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3211882}
\elib{https://elibrary.ru/item.asp?id=21418167}
\transl
\jour Comput. Math. Math. Phys.
\yr 2014
\vol 54
\issue 5
\pages 785--796
\crossref{https://doi.org/10.1134/S0965542514050108}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000336450500006}
\elib{https://elibrary.ru/item.asp?id=22095187}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84901624681}
Linking options:
https://www.mathnet.ru/eng/zvmmf10031
https://www.mathnet.ru/eng/zvmmf/v54/i5/p766
This publication is cited in the following 3 articles:
N. T. Levashova, N. A. Mikheev, “Cauchy Problem for a Singularly Perturbed Delay Equation”, VMU, 2023, no. №5_2023, 2350103–1
N. T. Levashova, N. A. Mikheev, “Cauchy Problem for a Singularly Perturbed Delay Equation”, Moscow Univ. Phys., 78:5 (2023), 595
T. Sh. Morgoshia, S. S. Mosoyan, “The application of the operation according to the method Billroth-I in cancer patients: past and present”, Bulletin of the Russian Military Medical Academy, 19:2 (2017), 245