Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2009, Volume 49, Number 4, Pages 595–600 (Mi zvmmf1)  

This article is cited in 3 scientific papers (total in 3 papers)

Low-rank perturbations of symmetric matrices and their condensed forms under unitary congruences

M. Ghasemi Kamalvanda, Kh. D. Ikramovb

a University of Lorestan, Khorramabad, Islamic Republic of Iran
b Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119992, Russia
Full-text PDF (794 kB) Citations (3)
References:
Abstract: The method MINRES-CN was earlier proposed by the authors for solving systems of linear equations with conjugate-normal coefficient matrices. It is now shown that this method is also applicable even if the coefficient matrix, albeit not conjugate-normal, is a low-rank perturbation of a symmetric matrix. If the perturbed matrix is still conjugate-normal, then, starting from some iteration step, the recursion underlying MINRES-CN becomes a three-term relation. These results are proved in terms of matrix condensed forms with respect to unitary congruences.
Key words: normal matrices, onjugate-normal matrices, unitary similarity transformations, unitary congruence transformations, Krylov subspacesm, complex symmetric matrices.
Received: 12.08.2008
English version:
Computational Mathematics and Mathematical Physics, 2009, Volume 49, Issue 4, Pages 573–578
DOI: https://doi.org/10.1134/S0965542509040010
Bibliographic databases:
Document Type: Article
UDC: 519.614
Language: Russian
Citation: M. Ghasemi Kamalvand, Kh. D. Ikramov, “Low-rank perturbations of symmetric matrices and their condensed forms under unitary congruences”, Zh. Vychisl. Mat. Mat. Fiz., 49:4 (2009), 595–600; Comput. Math. Math. Phys., 49:4 (2009), 573–578
Citation in format AMSBIB
\Bibitem{GhaIkr09}
\by M.~Ghasemi Kamalvand, Kh.~D.~Ikramov
\paper Low-rank perturbations of symmetric matrices and their condensed forms under unitary congruences
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2009
\vol 49
\issue 4
\pages 595--600
\mathnet{http://mi.mathnet.ru/zvmmf1}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2560939}
\transl
\jour Comput. Math. Math. Phys.
\yr 2009
\vol 49
\issue 4
\pages 573--578
\crossref{https://doi.org/10.1134/S0965542509040010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000265647400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65149101276}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf1
  • https://www.mathnet.ru/eng/zvmmf/v49/i4/p595
  • This publication is cited in the following 3 articles:
    1. Kh. D. Ikramov, “Involutions and Coninvolutions”, Numer. Analys. Appl., 16:4 (2023), 317  crossref
    2. Kamalvand M.G. Farazmandnia B. Aliyari M., “A Method For Solving of Linear System With Normal Coefficient Matrices”, J. Korean Soc. Ind. Appl. Math., 24:3 (2020), 305–320  crossref  isi
    3. Kh. D. Ikramov, “Improved bounds for the recursion width in congruent type methods for solving systems of linear equations”, J. Math. Sci. (N. Y.), 165:5 (2010), 515–520  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:403
    Full-text PDF :124
    References:73
    First page:3
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025