Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 312, Pages 256–274 (Mi znsl783)  

This article is cited in 23 scientific papers (total in 23 papers)

Newton–Kantorovich method and its global convergence

B. T. Polyak

Institute of Control Sciences, Russian Academy of Sciences
References:
Abstract: In 1948, L. V. Kantorovich extended the Newton method for solving nonlinear equations to functional spaces. This event cannot be overestimated: the Newton–Kantorovich method became a powerful tool in numerical analysis as well as in pure mathematics. We address basic ideas of the method in the historical perspective and focus on some recent applications and extensions of the method and some approaches to overcoming its local nature.
Received: 28.07.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 133, Issue 4, Pages 1513–1523
DOI: https://doi.org/10.1007/s10958-006-0066-1
Bibliographic databases:
UDC: 519.62
Language: English
Citation: B. T. Polyak, “Newton–Kantorovich method and its global convergence”, Representation theory, dynamical systems. Part XI, Special issue, Zap. Nauchn. Sem. POMI, 312, POMI, St. Petersburg, 2004, 256–274; J. Math. Sci. (N. Y.), 133:4 (2006), 1513–1523
Citation in format AMSBIB
\Bibitem{Pol04}
\by B.~T.~Polyak
\paper Newton--Kantorovich method and its global convergence
\inbook Representation theory, dynamical systems. Part~XI
\bookinfo Special issue
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 312
\pages 256--274
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl783}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2117893}
\zmath{https://zbmath.org/?q=an:1080.65534}
\elib{https://elibrary.ru/item.asp?id=9129091}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 133
\issue 4
\pages 1513--1523
\crossref{https://doi.org/10.1007/s10958-006-0066-1}
Linking options:
  • https://www.mathnet.ru/eng/znsl783
  • https://www.mathnet.ru/eng/znsl/v312/p256
  • This publication is cited in the following 23 articles:
    1. S. Smirnov, E. Podivilov, B. Sturman, “Electrostatic conductive disc singularity resolved”, Journal of Applied Physics, 135:12 (2024)  crossref
    2. A. Aimi, M.A. Leoni, S. Remogna, “Numerical solution of nonlinear Fredholm–Hammerstein integral equations with logarithmic kernel by spline quasi-interpolating projectors”, Mathematics and Computers in Simulation, 223 (2024), 183  crossref
    3. Sanda Micula, Gradimir V. Milovanović, Mathematics Online First Collections, Matrix and Operator Equations and Applications, 2023, 661  crossref
    4. Chengxi Zhao, Zhao Zhang, Ting Si, “Fluctuation-driven instability of nanoscale liquid films on chemically heterogeneous substrates”, Physics of Fluids, 35:7 (2023)  crossref
    5. Chengxi Zhao, Jingbang Liu, Duncan A. Lockerby, James E. Sprittles, “Fluctuation-driven dynamics in nanoscale thin-film flows: Physical insights from numerical investigations”, Phys. Rev. Fluids, 7:2 (2022)  crossref
    6. Andrea Bel, Romina Cobiaga, Walter Reartes, Horacio G. Rotstein, “Periodic Solutions in Threshold-Linear Networks and Their Entrainment”, SIAM J. Appl. Dyn. Syst., 20:3 (2021), 1177  crossref
    7. Aleksandr V. Gondlyakh, Aleksandr L. Sokolskiy, Aleksandr E. Kolosov, Andrey O. Chemeris, Valeriy Yu. Shcherbina, Sergiy I. Antonyuk, 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP), 2020, 02TM06-1  crossref
    8. Boris Polyak, Andrey Tremba, “New versions of Newton method: step-size choice, convergence domain and under-determined equations”, Optimization Methods and Software, 35:6 (2020), 1272  crossref
    9. José Antonio Ezquerro Fernández, Miguel Ángel Hernández Verón, Frontiers in Mathematics, Mild Differentiability Conditions for Newton's Method in Banach Spaces, 2020, 1  crossref
    10. Boris Polyak, Andrey Tremba, “Sparse solutions of optimal control via Newton method for under-determined systems”, J Glob Optim, 76:3 (2020), 613  crossref
    11. F. A. Parand, Z. Kalantari, M. Delkhosh, F. Mirahmadian, “A Computationally Hybrid Method for Solving a Famous Physical Problem on an Unbounded Domain”, Commun. Theor. Phys., 71:1 (2019), 009  crossref
    12. Z.K. Eshkuvatov, Hameed Husam Hameed, B.M. Taib, N.M.A. Nik Long, “General 2 × 2 system of nonlinear integral equations and its approximate solution”, Journal of Computational and Applied Mathematics, 361 (2019), 528  crossref
    13. A.R. Setoodeh, H. Farahmand, “Continuum-DFT multiscale model to investigate linear/nonlinear anisotropic mechanical characterization of crystal phase of nylon-6, 6”, Mechanics of Materials, 117 (2018), 181  crossref
    14. Fernandez J., Veron M., “Newton'S Method: An Updated Approach of Kantorovich'S Theory”, Newton'S Method: An Updated Approach of Kantorovich'S Theory, Frontiers in Mathematics, Birkhauser Verlag Ag, 2017, 1–166  crossref  mathscinet  isi
    15. Marko Kovandžić, Vlastimir Nikolić, Abdulathim Al-Noori, Ivan Ćirić, Miloš Simonović, “Near field acoustic localization under unfavorable conditions using feedforward neural network for processing time difference of arrival”, Expert Systems with Applications, 71 (2017), 138  crossref
    16. Thomas J. Böhme, Benjamin Frank, Advances in Industrial Control, Hybrid Systems, Optimal Control and Hybrid Vehicles, 2017, 27  crossref
    17. Ioannis Konstantinos Argyros, Jose Manuel Gutierrez, Angel Alberto Magrenan, Natalia Romero, “CONVERGENCE OF THE RELAXED NEWTON'S METHOD”, Journal of the Korean Mathematical Society, 51:1 (2014), 137  crossref
    18. J.M. Gutiérrez, Á.A. Magreñán, N. Romero, “On the semilocal convergence of Newton–Kantorovich method under center-Lipschitz conditions”, Applied Mathematics and Computation, 221 (2013), 79  crossref
    19. Boikov I.V., “On a Continuous Method for Solving Nonlinear Operator Equations”, Differ. Equ., 48:9 (2012), 1288–1295  crossref  mathscinet  zmath  isi  elib  scopus
    20. Milan Gocic, Enis Sadovic, “Software for application of Newton-Raphson method in estimation of strains in prestressed concrete girders”, Computers & concrete, 10:2 (2012), 121  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:766
    Full-text PDF :552
    References:103
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025