Loading [MathJax]/jax/output/SVG/config.js
Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2024, Volume 540, Pages 132–147 (Mi znsl7547)  

Improved maximum noise level estimation in black-box optimization problems

A. Lobanovabc, A. Gasnikovdec

a Skolkovo Institute of Science and Technology, Moscow, Russia
b ISP RAS Research Center for Trusted Artificial Intelligence, Moscow, Russia
c Moscow Institute of Physics and Technology, Dolgoprudny, Russia
d Steklov Mathematical Institute of RAS, Moscow, Russia
e Innopolis University, Innopolis, Russia
References:
Abstract: In black-box optimization, accurately estimating the maximum noise level is crucial for robust performance. In this work, we propose a novel approach for improving maximum noise level estimation, focusing on scenarios where only function values (possibly with bounded adversarial noise) are available. Leveraging gradient-free optimization algorithms, we introduce a new noise constraint based on the Lipschitz assumption, enhancing the noise level estimate (or improving error floor) for non-smooth and convex functions. Theoretical analysis and numerical experiments demonstrate the effectiveness of our approach, even for smooth and convex functions. This advancement contributes to enhancing the robustness and efficiency of black-box optimization algorithms in diverse domains such as machine learning and engineering design, where adversarial noise presents a significant challenge.
Key words and phrases: noise level estimation, black-box optimization, adversarial noise.
Funding agency
This research was supported by the Russian Science Foundation, project no. 21-71-30005, https://rscf.ru/en/project/21-71-30005/.
Received: 15.11.2024
Document Type: Article
Language: English
Citation: A. Lobanov, A. Gasnikov, “Improved maximum noise level estimation in black-box optimization problems”, Investigations on applied mathematics and informatics. Part IV, Zap. Nauchn. Sem. POMI, 540, POMI, St. Petersburg, 2024, 132–147
Citation in format AMSBIB
\Bibitem{LobGas24}
\by A.~Lobanov, A.~Gasnikov
\paper Improved maximum noise level estimation in black-box optimization problems
\inbook Investigations on applied mathematics and informatics. Part~IV
\serial Zap. Nauchn. Sem. POMI
\yr 2024
\vol 540
\pages 132--147
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7547}
Linking options:
  • https://www.mathnet.ru/eng/znsl7547
  • https://www.mathnet.ru/eng/znsl/v540/p132
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:41
    Full-text PDF :12
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025