Abstract:
Parabolic equation describes propagation of the localized waves along the boundary with peculiarities. We present here some reformulation of the “separation of variables”, which gives the possibility to obtain rich set of solutions of the corresponding boundary problems.
Key words and phrases:
diffraction theory, separation of variables, localized waves.
Citation:
A. Ya. Kazakov, ““Separation of variables” in the model problems of the diffraction theory. Formal scheme”, Mathematical problems in the theory of wave propagation. Part 48, Zap. Nauchn. Sem. POMI, 471, POMI, St. Petersburg, 2018, 124–139; J. Math. Sci. (N. Y.), 243:5 (2019), 715–725
\Bibitem{Kaz18}
\by A.~Ya.~Kazakov
\paper ``Separation of variables'' in the model problems of the diffraction theory. Formal scheme
\inbook Mathematical problems in the theory of wave propagation. Part~48
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 471
\pages 124--139
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6629}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 243
\issue 5
\pages 715--725
\crossref{https://doi.org/10.1007/s10958-019-04573-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075130810}
Linking options:
https://www.mathnet.ru/eng/znsl6629
https://www.mathnet.ru/eng/znsl/v471/p124
This publication is cited in the following 3 articles: