Loading [MathJax]/jax/output/SVG/config.js
Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 471, Pages 124–139 (Mi znsl6629)  

This article is cited in 3 scientific papers (total in 3 papers)

“Separation of variables” in the model problems of the diffraction theory. Formal scheme

A. Ya. Kazakovab

a St. Petersburg State University of Technology and Design, St. Petersburg, Russia
b St. Petersburg State University of Aerospace Instrumentation, St. Petersburg, Russia
Full-text PDF (478 kB) Citations (3)
References:
Abstract: Parabolic equation describes propagation of the localized waves along the boundary with peculiarities. We present here some reformulation of the “separation of variables”, which gives the possibility to obtain rich set of solutions of the corresponding boundary problems.
Key words and phrases: diffraction theory, separation of variables, localized waves.
Received: 13.08.2018
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 243, Issue 5, Pages 715–725
DOI: https://doi.org/10.1007/s10958-019-04573-7
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. Ya. Kazakov, ““Separation of variables” in the model problems of the diffraction theory. Formal scheme”, Mathematical problems in the theory of wave propagation. Part 48, Zap. Nauchn. Sem. POMI, 471, POMI, St. Petersburg, 2018, 124–139; J. Math. Sci. (N. Y.), 243:5 (2019), 715–725
Citation in format AMSBIB
\Bibitem{Kaz18}
\by A.~Ya.~Kazakov
\paper ``Separation of variables'' in the model problems of the diffraction theory. Formal scheme
\inbook Mathematical problems in the theory of wave propagation. Part~48
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 471
\pages 124--139
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6629}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 243
\issue 5
\pages 715--725
\crossref{https://doi.org/10.1007/s10958-019-04573-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075130810}
Linking options:
  • https://www.mathnet.ru/eng/znsl6629
  • https://www.mathnet.ru/eng/znsl/v471/p124
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:119
    Full-text PDF :33
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025