Loading [MathJax]/jax/output/CommonHTML/jax.js
Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 449, Pages 130–167 (Mi znsl6325)  

This article is cited in 7 scientific papers (total in 7 papers)

Simplex-module algorithm for expansion of algebraic numbers in multidimensional continued fractions

V. G. Zhuravlev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Full-text PDF (332 kB) Citations (7)
References:
Abstract: Simplex-module algorithm (SM-algorithm) for expansion of algebraic numbers α=(α1,,αd) in multidimensional continued fractions is offered. The method is based on 1) minimal rational simplices s, where αs, and 2) Pisot matrices Pα for which ˆα=(α1,,αd,1) is eigenvector. A multi-dimensional generalization of the Lagrange theorem is proved.
Key words and phrases: multidimensional continued fractions, best approximation, multidimensional generalization of Lagrange's theorem.
Funding agency Grant number
Russian Science Foundation 14-11-00433
Received: 01.08.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 225, Issue 6, Pages 924–949
DOI: https://doi.org/10.1007/s10958-017-3506-1
Bibliographic databases:
Document Type: Article
UDC: 511
Language: Russian
Citation: V. G. Zhuravlev, “Simplex-module algorithm for expansion of algebraic numbers in multidimensional continued fractions”, Analytical theory of numbers and theory of functions. Part 32, Zap. Nauchn. Sem. POMI, 449, POMI, St. Petersburg, 2016, 130–167; J. Math. Sci. (N. Y.), 225:6 (2017), 924–949
Citation in format AMSBIB
\Bibitem{Zhu16}
\by V.~G.~Zhuravlev
\paper Simplex-module algorithm for expansion of algebraic numbers in multidimensional continued fractions
\inbook Analytical theory of numbers and theory of functions. Part~32
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 449
\pages 130--167
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6325}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3580134}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 225
\issue 6
\pages 924--949
\crossref{https://doi.org/10.1007/s10958-017-3506-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85027385763}
Linking options:
  • https://www.mathnet.ru/eng/znsl6325
  • https://www.mathnet.ru/eng/znsl/v449/p130
  • This publication is cited in the following 7 articles:
    1. V. G. Zhuravlev, “L-Algorithm for Approximation of Diophantine Systems of Linear Forms”, J Math Sci, 261:4 (2022), 517  crossref
    2. V. G. Zhuravlev, “Symmetry Properties of Karyon Tilings”, J Math Sci, 264:2 (2022), 150  crossref
    3. V. G. Zhuravlev, “Matrix-Fractional Invariance of Diophantine Systems of Linear Forms”, J Math Sci, 264:2 (2022), 103  crossref
    4. V. G. Zhuravlev, “Diophantine Approximations of Linear Forms”, J Math Sci, 261:4 (2022), 503  crossref
    5. V. G. Zhuravlev, “Local Structure of Karyon Tilings”, J Math Sci, 264:2 (2022), 122  crossref
    6. V. G. Zhuravlev, “Lokalnyi algoritm postroeniya proizvodnykh razbienii dvumernogo tora”, Algebra i teoriya chisel. 2, Zap. nauchn. sem. POMI, 479, POMI, SPb., 2019, 85–120  mathnet
    7. V. G. Zhuravlev, “Simplex–karyon algorithm of multidimensional continued fraction expansion”, Proc. Steklov Inst. Math., 299 (2017), 268–287  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :57
    References:39
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025