Abstract:
A principal circle bundle over a PL polyhedron can be triangulated and thus obtains combinatorics. The triangulation is assembled from triangulated circle bundles over simplices. To every triangulated circle bundle over a simplex we associate a necklace (in the combinatorial sense). We express rational local formulas for all powers of the first Chern class in terms of expectations of the parities of the associated necklaces. This rational parity is a combinatorial isomorphism invariant of a triangulated circle bundle over a simplex, measuring the mixing by the triangulation of the circular graphs over vertices of the simplex. The goal of this note is to sketch the logic of deducing these formulas from Kontsevitch's cyclic invariant connection form on metric polygons.
Key words and phrases:
circle bundle, Chern class, local formula.
The main result of the paper (Theorem 4.1) was supported by the Russian Science Foundation grant 14-21-00035. G. Sharygin was additionally supported by the RFBR grant 14-01-00007.
Citation:
N. Mnev, G. Sharygin, “On local combinatorial formulas for Chern classes of a triangulated circle bundle”, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Zap. Nauchn. Sem. POMI, 448, POMI, St. Petersburg, 2016, 201–235; J. Math. Sci. (N. Y.), 224:2 (2017), 304–327
\Bibitem{MneSha16}
\by N.~Mnev, G.~Sharygin
\paper On local combinatorial formulas for Chern classes of a~triangulated circle bundle
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXVII
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 448
\pages 201--235
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6312}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3576259}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 224
\issue 2
\pages 304--327
\crossref{https://doi.org/10.1007/s10958-017-3416-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019686152}
Linking options:
https://www.mathnet.ru/eng/znsl6312
https://www.mathnet.ru/eng/znsl/v448/p201
This publication is cited in the following 8 articles:
G. Yu. Panina, “An elementary approach to local combinatorial formulae for the Euler class of a PL spherical fibre bundle”, Sb. Math., 214:3 (2023), 429–443
N. E. Mnëv, “A Note on a Local Combinatorial Formula for the Euler Class of a PL Spherical Fiber Bundle”, J Math Sci, 261:5 (2022), 614
N. E. Mnëv, “A note on a local combinatorial formula for the Euler class of a PL spherical fiber bundle”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXXIII, Zap. nauchn. sem. POMI, 507, POMI, SPb., 2021, 35–58
N. Mnëv, “Minimal Triangulations of Circle Bundles, Circular Permutations, and the Binary Chern Cocycle”, J Math Sci, 247:5 (2020), 696
N. Mnëv, “Minimal triangulations of circle bundles, circular permutations, and the binary Chern cocycle”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. XXX, Zap. nauchn. sem. POMI, 481, POMI, SPb., 2019, 87–107
J. Gordon, G. Panina, “A combinatorial formula for monomials in Kontsevich's ψ-classes”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXXI, Zap. nauchn. sem. POMI, 485, POMI, SPb., 2019, 72–77
J. A. Gordon, G. Yu. Panina, “Diagonal complexes”, Izv. Math., 82:5 (2018), 861–879