Loading [MathJax]/jax/output/CommonHTML/jax.js
Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 448, Pages 201–235 (Mi znsl6312)  

This article is cited in 8 scientific papers (total in 8 papers)

On local combinatorial formulas for Chern classes of a triangulated circle bundle

N. Mnevab, G. Sharygincd

a St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg, Russia
b Chebyshev Laboratory, St. Petersburg State University, St. Petersburg, Russia
c Institute for Theoretical and Experimental Physics, Moscow, Russia
d Moscow State University, Moscow, Russia
Full-text PDF (711 kB) Citations (8)
References:
Abstract: A principal circle bundle over a PL polyhedron can be triangulated and thus obtains combinatorics. The triangulation is assembled from triangulated circle bundles over simplices. To every triangulated circle bundle over a simplex we associate a necklace (in the combinatorial sense). We express rational local formulas for all powers of the first Chern class in terms of expectations of the parities of the associated necklaces. This rational parity is a combinatorial isomorphism invariant of a triangulated circle bundle over a simplex, measuring the mixing by the triangulation of the circular graphs over vertices of the simplex. The goal of this note is to sketch the logic of deducing these formulas from Kontsevitch's cyclic invariant connection form on metric polygons.
Key words and phrases: circle bundle, Chern class, local formula.
Funding agency Grant number
Russian Science Foundation 14-21-00035
Russian Foundation for Basic Research 14-01-00007
The main result of the paper (Theorem 4.1) was supported by the Russian Science Foundation grant 14-21-00035. G. Sharygin was additionally supported by the RFBR grant 14-01-00007.
Received: 16.08.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 224, Issue 2, Pages 304–327
DOI: https://doi.org/10.1007/s10958-017-3416-2
Bibliographic databases:
Document Type: Article
UDC: 515.145.2
Language: English
Citation: N. Mnev, G. Sharygin, “On local combinatorial formulas for Chern classes of a triangulated circle bundle”, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Zap. Nauchn. Sem. POMI, 448, POMI, St. Petersburg, 2016, 201–235; J. Math. Sci. (N. Y.), 224:2 (2017), 304–327
Citation in format AMSBIB
\Bibitem{MneSha16}
\by N.~Mnev, G.~Sharygin
\paper On local combinatorial formulas for Chern classes of a~triangulated circle bundle
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXVII
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 448
\pages 201--235
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6312}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3576259}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 224
\issue 2
\pages 304--327
\crossref{https://doi.org/10.1007/s10958-017-3416-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019686152}
Linking options:
  • https://www.mathnet.ru/eng/znsl6312
  • https://www.mathnet.ru/eng/znsl/v448/p201
  • This publication is cited in the following 8 articles:
    1. G. Yu. Panina, “An elementary approach to local combinatorial formulae for the Euler class of a PL spherical fibre bundle”, Sb. Math., 214:3 (2023), 429–443  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. N. E. Mnëv, “A Note on a Local Combinatorial Formula for the Euler Class of a PL Spherical Fiber Bundle”, J Math Sci, 261:5 (2022), 614  crossref
    3. N. E. Mnëv, “A note on a local combinatorial formula for the Euler class of a PL spherical fiber bundle”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXXIII, Zap. nauchn. sem. POMI, 507, POMI, SPb., 2021, 35–58  mathnet
    4. N. Mnëv, “Minimal Triangulations of Circle Bundles, Circular Permutations, and the Binary Chern Cocycle”, J Math Sci, 247:5 (2020), 696  crossref
    5. N. Mnëv, “Minimal triangulations of circle bundles, circular permutations, and the binary Chern cocycle”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. XXX, Zap. nauchn. sem. POMI, 481, POMI, SPb., 2019, 87–107  mathnet
    6. J. Gordon, G. Panina, “A combinatorial formula for monomials in Kontsevich's ψ-classes”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXXI, Zap. nauchn. sem. POMI, 485, POMI, SPb., 2019, 72–77  mathnet
    7. J. A. Gordon, G. Yu. Panina, “Diagonal complexes”, Izv. Math., 82:5 (2018), 861–879  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. J. Math. Sci. (N. Y.), 240:5 (2019), 551–555  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:277
    Full-text PDF :74
    References:48
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025