Abstract:
We consider a linear skew product with the full shift in the base and nonzero Lyapunov exponent in the fiber. We provide a sharp estimate for the precision of shadowing for a typical pseudotrajectory of finite length. This result indicates that the high-dimensional analog of the Hammel–Yorke–Grebogi conjecture concerning the interval of shadowability for a typical pseudotrajectory is not correct. The main technique is the reduction of the shadowing problem to the ruin problem for a simple random walk.
Key words and phrases:
shadowing, skew product, random walk, large deviation principle.
Citation:
S. Tikhomirov, “Shadowing in linear skew products”, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Zap. Nauchn. Sem. POMI, 432, POMI, St. Petersburg, 2015, 261–273; J. Math. Sci. (N. Y.), 209:6 (2015), 979–987
\Bibitem{Tik15}
\by S.~Tikhomirov
\paper Shadowing in linear skew products
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXIV
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 432
\pages 261--273
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6120}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 209
\issue 6
\pages 979--987
\crossref{https://doi.org/10.1007/s10958-015-2541-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84939459016}
Linking options:
https://www.mathnet.ru/eng/znsl6120
https://www.mathnet.ru/eng/znsl/v432/p261
This publication is cited in the following 2 articles:
P. A. Priezzhev, V. A. Priezzhev, S. B. Tikhomirov, “Probabilistic Shadowing for Pseudotrajectories with Decreasing Errors”, J Math Sci, 281:1 (2024), 142
V. A. Priezzhev, P. A. Priezzhev, S. B. Tikhomirov, “Veroyatnostnoe otslezhivanie dlya psevdotraektorii s ubyvayuschimi oshibkami”, Veroyatnost i statistika. 31, Zap. nauchn. sem. POMI, 505, POMI, SPb., 2021, 207–229