Abstract:
We consider a free boundary problem governing the motion of a finite isolated mass of a viscous incompressible electrically conducting fluid in vacuum. Media is moving under the action of magnetic field and volume forces. We prove solvability of this free boundary problem in an infinite time interval under the additional smallness assumptions imposed on initial data and the external forces.
Key words and phrases:
magnetohydrodynamics, solvability on an infinite time interval, free boundary problems.
Citation:
E. V. Frolova, “Free boundary problem of magnetohydrodynamics”, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Zap. Nauchn. Sem. POMI, 425, POMI, St. Petersburg, 2014, 149–178; J. Math. Sci. (N. Y.), 210:6 (2015), 857–877
\Bibitem{Fro14}
\by E.~V.~Frolova
\paper Free boundary problem of magnetohydrodynamics
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~44
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 425
\pages 149--178
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6026}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 210
\issue 6
\pages 857--877
\crossref{https://doi.org/10.1007/s10958-015-2596-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944704633}
Linking options:
https://www.mathnet.ru/eng/znsl6026
https://www.mathnet.ru/eng/znsl/v425/p149
This publication is cited in the following 4 articles:
Shibata Y., Zajaczkowski W.M., “On Local Solutions to a Free Boundary Problem For Incompressible Viscous Magnetohydrodynamics in the l-P-Approach”, Diss. Math., 2021
Kenta Oishi, Yoshihiro Shibata, “Local Well-Posedness for Free Boundary Problem of Viscous Incompressible Magnetohydrodynamics”, Mathematics, 9:5 (2021), 461
P. Kacprzyk, W. M. Zajaczkowski, “On the Faedo-Galerkin method for a free boundary problem for incompressible viscous magnetohydrodynamics”, Topol. Methods Nonlinear Anal., 52:1 (2018), 69–98