Processing math: 100%
Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 415, Pages 62–74 (Mi znsl5686)  

This article is cited in 4 scientific papers (total in 4 papers)

Groups acting on dendrons

A. V. Malyutin

St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (251 kB) Citations (4)
References:
Abstract: A dendron is a continuum (a non-empty connected compact Hausdorff space) in which every two distinct points have a separation point. We prove that if a group G acts on a dendron D by homeomorphisms, then either D contains a G-invariant subset consisting of one or two points, or G contains a free non-commutative subgroup and, furthermore, the action is strongly proximal.
Key words and phrases: dendron, dendrite, tree, R-tree, pretree, dendritic space, amenability, invariant measure, von Neumann conjecture, Tits alternative, free non-Abelian subgroup, strong proximality.
Received: 06.05.2013
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 212, Issue 5, Pages 558–565
DOI: https://doi.org/10.1007/s10958-016-2688-2
Bibliographic databases:
Document Type: Article
UDC: 512.54+515.12
Language: Russian
Citation: A. V. Malyutin, “Groups acting on dendrons”, Geometry and topology. Part 12, Zap. Nauchn. Sem. POMI, 415, POMI, St. Petersburg, 2013, 62–74; J. Math. Sci. (N. Y.), 212:5 (2016), 558–565
Citation in format AMSBIB
\Bibitem{Mal13}
\by A.~V.~Malyutin
\paper Groups acting on dendrons
\inbook Geometry and topology. Part~12
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 415
\pages 62--74
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5686}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 212
\issue 5
\pages 558--565
\crossref{https://doi.org/10.1007/s10958-016-2688-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953410388}
Linking options:
  • https://www.mathnet.ru/eng/znsl5686
  • https://www.mathnet.ru/eng/znsl/v415/p62
  • This publication is cited in the following 4 articles:
    1. L. S. Efremova, E. N. Makhrova, “One-dimensional dynamical systems”, Russian Math. Surveys, 76:5 (2021), 821–881  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. Abdalaoui E.H.E., Naghmouchi I., “Group Action With Finite Orbits on Local Dendrites”, Dynam. Syst., 36:4 (2021), 714–730  crossref  mathscinet  isi
    3. Shi E., Ye X., “Equicontinuity of Minimal Sets For Amenable Group Actions on Dendrites”, Dynamics: Topology and Numbers, Contemporary Mathematics, 744, eds. Moree P., Pohl A., Snoha L., Ward T., Amer Mathematical Soc, 2020, 175–180  crossref  mathscinet  zmath  isi
    4. Glasner E., Megrelishvili M., “Group Actions on Treelike Compact Spaces”, Sci. China-Math., 62:12 (2019), 2447–2462  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:326
    Full-text PDF :94
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025