Abstract:
We prove global in time solvability of a free boundary problem governing the motion of a finite isolated mass of a viscous incompressible electrically conducting capillary liquid in vacuum, under the smallness assumptions on initial data. We assume that initial position of a free boundary is close to a sphere. We show that if $t\to\infty$, then the solution tends to zero exponentially and the free boundary tends to a sphere of the same radius, but, in general, the sphere may have a different center. The solution is obtained in Sobolev–Slobodetskii spaces $W_2^{2+l,1+l/2}$, $1/2<l<1$.
Key words and phrases:
magnetohydrodynamics, free boundary, global solvability, Sobolev spaces.
Citation:
V. A. Solonnikov, E. V. Frolova, “Solvability of a free boundary problem of magnetohydrodynamics in an infinite time interval”, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Zap. Nauchn. Sem. POMI, 410, POMI, St. Petersburg, 2013, 131–167; J. Math. Sci. (N. Y.), 195:1 (2013), 76–97
\Bibitem{SolFro13}
\by V.~A.~Solonnikov, E.~V.~Frolova
\paper Solvability of a~free boundary problem of magnetohydrodynamics in an infinite time interval
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~43
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 410
\pages 131--167
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5627}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3048264}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 195
\issue 1
\pages 76--97
\crossref{https://doi.org/10.1007/s10958-013-1565-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898989170}
Linking options:
https://www.mathnet.ru/eng/znsl5627
https://www.mathnet.ru/eng/znsl/v410/p131
This publication is cited in the following 13 articles: