Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 394, Pages 33–139 (Mi znsl4630)  

This article is cited in 15 scientific papers (total in 15 papers)

Linear groups over general rings. I. Generalities

N. A. Vavilova, A. V. Stepanovba

a Saint-Petersburg State University, Saint-Petersburg, Russia
b Abdus Salam School of Mathematical Sciences, Lahore, Pakistan
References:
Abstract: This paper is the first part of a systematic survey on the structure of classical groups over general rings. We intend to cover various proofs of the main structure theorems, commutator formulae, finiteness and stability conditions, stability and pre-stability theorems, nilpotency of K1, centrality of K2, automorphism and homomorphisms, etc. This first part covers background material such as one-sided inverses, elementary transformations, definitions of obvious subgroups, Bruhat and Gauss decompositions, relative subgroups, finitary phenomens, and transvections.
Key words and phrases: linear groups, general linear group, associative rings, one-sided inverses, weakly finite rings, IBN rings, elementary transvections, linear transvections, congruence subgroups, elementary subgroups, Bruhat decomposition, Gauss decomposition, parabolic subgroups, group of finitary matrices, Whitehead type lemmas.
Received: 17.08.2011
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 188, Issue 5, Pages 490–550
DOI: https://doi.org/10.1007/s10958-013-1146-7
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: Russian
Citation: N. A. Vavilov, A. V. Stepanov, “Linear groups over general rings. I. Generalities”, Problems in the theory of representations of algebras and groups. Part 22, Zap. Nauchn. Sem. POMI, 394, POMI, St. Petersburg, 2011, 33–139; J. Math. Sci. (N. Y.), 188:5 (2013), 490–550
Citation in format AMSBIB
\Bibitem{VavSte11}
\by N.~A.~Vavilov, A.~V.~Stepanov
\paper Linear groups over general rings.~I. Generalities
\inbook Problems in the theory of representations of algebras and groups. Part~22
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 394
\pages 33--139
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4630}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2870172}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 188
\issue 5
\pages 490--550
\crossref{https://doi.org/10.1007/s10958-013-1146-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884413693}
Linking options:
  • https://www.mathnet.ru/eng/znsl4630
  • https://www.mathnet.ru/eng/znsl/v394/p33
  • This publication is cited in the following 15 articles:
    1. George Ioniţă, Frank Kutzschebauch, “Holomorphic factorization of vector bundle automorphisms”, Bulletin des Sciences Mathématiques, 199 (2025), 103565  crossref
    2. N. A. Vavilov, “St. Petersburg School of Linear Groups: II. Early Works by Suslin”, Vestnik St.Petersb. Univ.Math., 57:1 (2024), 30  crossref
    3. N. A. Vavilov, “Bounded generation of relative subgroups in Chevalley groups”, Algebra i teoriya chisel. 6, Zap. nauchn. sem. POMI, 523, POMI, SPb., 2023, 7–18  mathnet
    4. N. A. Vavilov, “Saint Petersburg School of the Theory of Linear Groups. I. Prehistory”, Vestnik St.Petersb. Univ.Math., 56:3 (2023), 273  crossref
    5. N. A. Vavilov, “Sankt-Peterburgskaya shkola teorii lineinykh grupp. I. Predystoriya”, Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya, 10:3 (2023), 381–405  mathnet  crossref
    6. M. A. Buryakov, N. A. Vavilov, “Relative decomposition of transvections: explicit bounds”, Voprosy teorii predstavlenii algebr i grupp. 38, Zap. nauchn. sem. POMI, 513, POMI, SPb., 2022, 9–21  mathnet  mathscinet
    7. N. Vavilov, Z. Zhang, “Commutators of Relative and Unrelative Elementary Groups, Revisited”, J Math Sci, 251:3 (2020), 339  crossref
    8. S. V. Sidorov, “On the Similarity of Certain Integer Matrices with Single Eigenvalue over the Ring of Integers”, Math. Notes, 105:5 (2019), 756–762  mathnet  crossref  crossref  mathscinet  isi  elib
    9. N. Vavilov, “Commutators of congruence subgroups in the arithmetic case”, Algebra i teoriya chisel. 2, Zap. nauchn. sem. POMI, 479, POMI, SPb., 2019, 5–22  mathnet
    10. N. Vavilov, Z. Zhang, “Commutators of relative and unrelative elementary groups, revisited”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXXI, Zap. nauchn. sem. POMI, 485, POMI, SPb., 2019, 58–71  mathnet
    11. J. Math. Sci. (N. Y.), 243:4 (2019), 515–526  mathnet  crossref
    12. J. Math. Sci. (N. Y.), 243:4 (2019), 527–534  mathnet  crossref
    13. E. Yu. Voronetsky, “Normalizers of elementary overgroups of $\mathrm{Ep}(2,A)$”, J. Math. Sci. (N. Y.), 232:5 (2018), 610–621  mathnet  crossref  mathscinet
    14. R. Hazrat, N. Vavilov, Z. Zhang, “The commutators of classical groups”, J. Math. Sci. (N. Y.), 222:4 (2017), 466–515  mathnet  mathnet  crossref  scopus
    15. J. Math. Sci. (N. Y.), 200:6 (2014), 742–768  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:950
    Full-text PDF :408
    References:118
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025