Abstract:
The spectral aspect of the problem of perturbations supported on thin sets of codimension $\theta\ge2m$ in $\mathbb R^n$ is considered for elliptic operators of order $m$. The problem of realization of such perturbations is formulated as a problem of self-adjoint extension of a linear symmetric relation in a space with indefinite metric. It is shown how to construct such a relation for a given elliptic operator and a family of distributions. Its functional model is obtained in terms of $Q$-fiunctions. Self-adjoint extensions and their resolvents are described. The theory developed is applied to quantum models of point interactions in high dimensions and high moments. Bibliography: 35 titles.
Citation:
Yu. G. Shondin, “Perturbations of elliptic operators on high codimension subsets and the extension theory on an indefinite metric space”, Investigations on linear operators and function theory. Part 23, Zap. Nauchn. Sem. POMI, 222, POMI, St. Petersburg, 1995, 246–292; J. Math. Sci. (New York), 87:5 (1997), 3941–3970
\Bibitem{Sho95}
\by Yu.~G.~Shondin
\paper Perturbations of elliptic operators on high codimension subsets and the extension theory on an indefinite metric space
\inbook Investigations on linear operators and function theory. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 222
\pages 246--292
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4317}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1360001}
\zmath{https://zbmath.org/?q=an:0925.35019|0900.35033}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 87
\issue 5
\pages 3941--3970
\crossref{https://doi.org/10.1007/BF02355833}
Linking options:
https://www.mathnet.ru/eng/znsl4317
https://www.mathnet.ru/eng/znsl/v222/p246
This publication is cited in the following 7 articles:
B. E. Kanguzhin, “Propagation of nonsmooth waves under singular perturbations of the wave equation”, Eurasian Math. J., 13:3 (2022), 41–50
B. E. Kanguzhin, D. B. Nurakhmetov, N. E. Tokmagambetov, “Laplace operator with $\delta$-like potentials”, Russian Math. (Iz. VUZ), 58:2 (2014), 6–12
M. I. Neiman-Zade, A. M. Savchuk, “Schrödinger Operators with Singular Potentials”, Proc. Steklov Inst. Math., 236 (2002), 250–259
S. Albeverio, V. Koshmanenko, P. Kurasov, L. Nizhnik, “On approximations of rank one ℋ₋₂-perturbations”, Proc. Amer. Math. Soc., 131:5 (2002), 1443
M. I. Neiman-Zade, A. A. Shkalikov, “Schrödinger operators with singular potentials from spaces of multipliers”, Math. Notes, 66:5 (1999), 599–607
A. M. Savchuk, A. A. Shkalikov, “Sturm–Liouville operators with singular potentials”, Math. Notes, 66:6 (1999), 741–753
Yu. G. Shondin, “Singular point perturbations of an odd operator in a $\mathbb Z_2$-graded space”, Math. Notes, 66:6 (1999), 764–776