Loading [MathJax]/jax/output/SVG/config.js
Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1995, Volume 222, Pages 246–292 (Mi znsl4317)  

This article is cited in 7 scientific papers (total in 7 papers)

Perturbations of elliptic operators on high codimension subsets and the extension theory on an indefinite metric space

Yu. G. Shondin

Nizhny Novgorod State Pedagogical University
Abstract: The spectral aspect of the problem of perturbations supported on thin sets of codimension $\theta\ge2m$ in $\mathbb R^n$ is considered for elliptic operators of order $m$. The problem of realization of such perturbations is formulated as a problem of self-adjoint extension of a linear symmetric relation in a space with indefinite metric. It is shown how to construct such a relation for a given elliptic operator and a family of distributions. Its functional model is obtained in terms of $Q$-fiunctions. Self-adjoint extensions and their resolvents are described. The theory developed is applied to quantum models of point interactions in high dimensions and high moments. Bibliography: 35 titles.
Received: 01.06.1994
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 87, Issue 5, Pages 3941–3970
DOI: https://doi.org/10.1007/BF02355833
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: Yu. G. Shondin, “Perturbations of elliptic operators on high codimension subsets and the extension theory on an indefinite metric space”, Investigations on linear operators and function theory. Part 23, Zap. Nauchn. Sem. POMI, 222, POMI, St. Petersburg, 1995, 246–292; J. Math. Sci. (New York), 87:5 (1997), 3941–3970
Citation in format AMSBIB
\Bibitem{Sho95}
\by Yu.~G.~Shondin
\paper Perturbations of elliptic operators on high codimension subsets and the extension theory on an indefinite metric space
\inbook Investigations on linear operators and function theory. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 222
\pages 246--292
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4317}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1360001}
\zmath{https://zbmath.org/?q=an:0925.35019|0900.35033}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 87
\issue 5
\pages 3941--3970
\crossref{https://doi.org/10.1007/BF02355833}
Linking options:
  • https://www.mathnet.ru/eng/znsl4317
  • https://www.mathnet.ru/eng/znsl/v222/p246
  • This publication is cited in the following 7 articles:
    1. B. E. Kanguzhin, “Propagation of nonsmooth waves under singular perturbations of the wave equation”, Eurasian Math. J., 13:3 (2022), 41–50  mathnet  crossref  mathscinet
    2. B. E. Kanguzhin, D. B. Nurakhmetov, N. E. Tokmagambetov, “Laplace operator with $\delta$-like potentials”, Russian Math. (Iz. VUZ), 58:2 (2014), 6–12  mathnet  crossref
    3. M. I. Neiman-Zade, A. M. Savchuk, “Schrödinger Operators with Singular Potentials”, Proc. Steklov Inst. Math., 236 (2002), 250–259  mathnet  mathscinet  zmath
    4. S. Albeverio, V. Koshmanenko, P. Kurasov, L. Nizhnik, “On approximations of rank one ℋ₋₂-perturbations”, Proc. Amer. Math. Soc., 131:5 (2002), 1443  crossref
    5. M. I. Neiman-Zade, A. A. Shkalikov, “Schrödinger operators with singular potentials from spaces of multipliers”, Math. Notes, 66:5 (1999), 599–607  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. A. M. Savchuk, A. A. Shkalikov, “Sturm–Liouville operators with singular potentials”, Math. Notes, 66:6 (1999), 741–753  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. Yu. G. Shondin, “Singular point perturbations of an odd operator in a $\mathbb Z_2$-graded space”, Math. Notes, 66:6 (1999), 764–776  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:140
    Full-text PDF :48
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025