Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 115, Pages 72–82 (Mi znsl4041)  

This article is cited in 47 scientific papers (total in 48 papers)

A theorem on the Markov periodic approximation in ergodic theory

A. M. Vershik
Abstract: One presents a new variant of the theory of periodic approximations of dynamical systems and C-algebras, namely the construction for each automorphism of the Lebesgue space of a Markov tower (or adic model) of periodic automorphisms. One gives several examples.
English version:
Journal of Soviet Mathematics, 1985, Volume 28, Issue 5, Pages 667–674
DOI: https://doi.org/10.1007/BF02112330
Bibliographic databases:
Document Type: Article
UDC: 517.4
Language: Russian
Citation: A. M. Vershik, “A theorem on the Markov periodic approximation in ergodic theory”, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Zap. Nauchn. Sem. LOMI, 115, "Nauka", Leningrad. Otdel., Leningrad, 1982, 72–82; J. Soviet Math., 28:5 (1985), 667–674
Citation in format AMSBIB
\Bibitem{Ver82}
\by A.~M.~Vershik
\paper A theorem on the Markov periodic approximation in ergodic theory
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~14
\serial Zap. Nauchn. Sem. LOMI
\yr 1982
\vol 115
\pages 72--82
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4041}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=660072}
\zmath{https://zbmath.org/?q=an:0505.47006}
\transl
\jour J. Soviet Math.
\yr 1985
\vol 28
\issue 5
\pages 667--674
\crossref{https://doi.org/10.1007/BF02112330}
Linking options:
  • https://www.mathnet.ru/eng/znsl4041
  • https://www.mathnet.ru/eng/znsl/v115/p72
  • This publication is cited in the following 48 articles:
    1. Mustafa İsmail Özkaraca, “Planar substitutions to Lebesgue type space-filling curves and relatively dense fractal-like sets in the plane”, Journal of Mathematical Analysis and Applications, 530:2 (2024), 127654  crossref
    2. A. M. Vershik, G. A. Veprev, P. B. Zatitskii, “Dynamics of metrics in measure spaces and scaling entropy”, Russian Math. Surveys, 78:3 (2023), 443–499  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. St. Petersburg Math. J., 34:3 (2023), 313–346  mathnet  crossref  mathscinet
    4. A. M. Vershik, “Spektr i absolyut grafa dvustrochechnykh diagramm Yunga”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXXIV, Zap. nauchn. sem. POMI, 517, POMI, SPb., 2022, 55–69  mathnet
    5. A. M. Vershik, “Kombinatornoe kodirovanie skhem Bernulli i asimptotika tablits Yunga”, Funkts. analiz i ego pril., 54:2 (2020), 3–24  mathnet  crossref  mathscinet
    6. Bezuglyi S., Karpel O., “Invariant Measures For Cantor Dynamical Systems”, Dynamics: Topology and Numbers, Contemporary Mathematics, 744, eds. Moree P., Pohl A., Snoha L., Ward T., Amer Mathematical Soc, 2020, 259–295  crossref  isi
    7. A. R. Minabutdinov, “Limiting Curves for the Dyadic Odometer”, J Math Sci, 247:5 (2020), 688  crossref
    8. A. R. Minabutdinov, “Predelnye krivye dlya diadicheskogo odometra”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. XXX, Zap. nauchn. sem. POMI, 481, POMI, SPb., 2019, 74–86  mathnet
    9. Bezuglyi S. Karpel O. Kwiatkowski J., “Exact Number of Ergodic Invariant Measures For Bratteli Diagrams”, J. Math. Anal. Appl., 480:2 (2019), 123431  crossref  isi
    10. VALÉRIE BERTHÉ, WOLFGANG STEINER, JÖRG M. THUSWALDNER, REEM YASSAWI, “Recognizability for sequences of morphisms”, Ergod. Th. Dynam. Sys., 39:11 (2019), 2896  crossref
    11. A. M. Vershik, P. B. Zatitskii, “Combinatorial Invariants of Metric Filtrations and Automorphisms; the Universal Adic Graph”, Funct. Anal. Appl., 52:4 (2018), 258–269  mathnet  crossref  crossref  mathscinet  isi  elib
    12. A. M. Vershik, P. B. Zatitskii, “On a universal Borel adic space”, J. Math. Sci. (N. Y.), 240:5 (2019), 515–524  mathnet  crossref
    13. A. M. Vershik, “The theory of filtrations of subalgebras, standardness, and independence”, Russian Math. Surveys, 72:2 (2017), 257–333  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. A. M. Vershik, P. B. Zatitskii, “Universal adic approximation, invariant measures and scaled entropy”, Izv. Math., 81:4 (2017), 734–770  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. Dmitry Zubov, “On cohomological equations for suspension flows over Vershik automorphisms”, Mosc. Math. J., 16:2 (2016), 381–391  mathnet  crossref  mathscinet  elib
    16. A. R. Minabutdinov, “Limiting curves for polynomial adic systems”, J. Math. Sci. (N. Y.), 224:2 (2017), 286–303  mathnet  crossref  mathscinet
    17. John C. Kieffer, 2016 IEEE International Symposium on Information Theory (ISIT), 2016, 16  crossref
    18. Anatoly M. Vershik, “Asymptotic theory of path spaces of graded graphs and its applications”, Jpn. J. Math., 11:2 (2016), 151  crossref
    19. A. R. Minabutdinov, “Random deviations of ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure”, J. Math. Sci. (N. Y.), 209:6 (2015), 953–978  mathnet  crossref
    20. P. B. Zatitskiy, “On the possible growth rate of a scaling entropy sequence”, J. Math. Sci. (N. Y.), 215:6 (2016), 715–733  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:406
    Full-text PDF :163
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025