Processing math: 100%
Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2010, Volume 385, Pages 224–233 (Mi znsl3907)  

This article is cited in 10 scientific papers (total in 10 papers)

Some Poincaré-type inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient

M. Fuchsa, S. Repinb

a Universität des Saarlandes, Fachbereich 6.1 Mathematik, Saarbrücken, Germany
b St. Petersburg Department of Steklov Institute of Mathematics, St. Petersburg, Russia
References:
Abstract: If ΩRn is a bounded Lipschitz domain, we prove the inequality u1c(n)diam(Ω)Ω|εD(u)| being valid for functions of bounded deformation vanishing on Ω. Here εD(u) denotes the deviatoric part of the symmetric gradient and Ω|εD(u)| stands for the total variation of the tensor-valued measure εD(u). Further results concern possible extensions of this Poincaré-type inequality. Bibl. 27 titles.
Key words and phrases: functions of bounded deformation, Poincaré' s inequality.
Received: 30.05.2010
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 178, Issue 3, Pages 367–372
DOI: https://doi.org/10.1007/s10958-011-0554-9
Bibliographic databases:
Document Type: Article
UDC: 517
Language: English
Citation: M. Fuchs, S. Repin, “Some Poincaré-type inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient”, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Zap. Nauchn. Sem. POMI, 385, POMI, St. Petersburg, 2010, 224–233; J. Math. Sci. (N. Y.), 178:3 (2011), 367–372
Citation in format AMSBIB
\Bibitem{FucRep10}
\by M.~Fuchs, S.~Repin
\paper Some Poincar\'e-type inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~41
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 385
\pages 224--233
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3907}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 178
\issue 3
\pages 367--372
\crossref{https://doi.org/10.1007/s10958-011-0554-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053532861}
Linking options:
  • https://www.mathnet.ru/eng/znsl3907
  • https://www.mathnet.ru/eng/znsl/v385/p224
  • This publication is cited in the following 10 articles:
    1. Peter Lewintan, Patrizio Neff, “Lp-trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 152:6 (2022), 1477  crossref
    2. Chambolle A., Crismale V., “Phase-Field Approximation For a Class of Cohesive Fracture Energies With An Activation Threshold”, Adv. Calc. Var., 14:4 (2021), 475–497  crossref  mathscinet  isi
    3. Peter Lewintan, Stefan Müller, Patrizio Neff, “Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy”, Calc. Var., 60:4 (2021)  crossref
    4. Breit D., Diening L., Gmeineder F., “On the Trace Operator For Functions of Bounded a-Variation”, Anal. PDE, 13:2 (2020), 559–594  crossref  mathscinet  zmath  isi
    5. Breit D., Cianchi A., Diening L., “Trace-Free Korn Inequalities in Orlicz Spaces”, SIAM J. Math. Anal., 49:4 (2017), 2496–2526  crossref  mathscinet  zmath  isi  scopus
    6. Bauer S., Neff P., Pauly D., Starke G., “Dev-Div- and Devsym-Devcurl-Inequalities For Incompatible Square Tensor Fields With Mixed Boundary Conditions”, ESAIM-Control OPtim. Calc. Var., 22:1 (2016), 112–133  crossref  mathscinet  zmath  isi  scopus
    7. Neff P., Pauly D., Witsch K.-J., “Poincaré Meets Korn Via Maxwell: Extending Korn'S First Inequality To Incompatible Tensor Fields”, J. Differ. Equ., 258:4 (2015), 1267–1302  crossref  mathscinet  zmath  isi  elib  scopus
    8. Breit D., Schirra O.D., “Korn-Type Inequalities in Orlicz-Sobolev Spaces Involving the Trace-Free Part of the Symmetric Gradient and Applications to Regularity Theory”, Z. Anal. ihre. Anwend., 31:3 (2012), 335–356  crossref  mathscinet  zmath  isi  elib  scopus
    9. Fuchs M., Repin S., “A posteriori error estimates for the approximations of the stresses in the Hencky plasticity problem”, Numer. Funct. Anal. Optim., 32:6 (2011), 610–640  crossref  mathscinet  zmath  isi  elib  scopus
    10. Fuchs M., “Computable upper bounds for the constants in Poincaré-type inequalities for fields of bounded deformation”, Math. Methods Appl. Sci., 34:15 (2011), 1920–1932  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:377
    Full-text PDF :115
    References:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025