Abstract:
We determine which singular del Pezzo surfaces are equivariant compactifications of G2a, to assist with proofs of Manin's conjecture for such surfaces. Additionally, we give an example of a singular quartic del Pezzo surface that is an equivariant compactification of Ga⋊Gm. Bibl. 32 titles.
Key words and phrases:
del Pezzo surfaces, rational points, Manin's conjecture, equivariant compactifications, Dynkin diagrams, blow-up.
Citation:
U. Derenthal, D. Loughran, “Singular del Pezzo surfaces that are equivariant compactifications”, Studies in number theory. Part 10, Zap. Nauchn. Sem. POMI, 377, POMI, St. Petersburg, 2010, 26–43; J. Math. Sci. (N. Y.), 171:6 (2010), 714–724
\Bibitem{DerLou10}
\by U.~Derenthal, D.~Loughran
\paper Singular del Pezzo surfaces that are equivariant compactifications
\inbook Studies in number theory. Part~10
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 377
\pages 26--43
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3811}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 171
\issue 6
\pages 714--724
\crossref{https://doi.org/10.1007/s10958-010-0174-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650055772}
Linking options:
https://www.mathnet.ru/eng/znsl3811
https://www.mathnet.ru/eng/znsl/v377/p26
This publication is cited in the following 25 articles:
Judith Ortmann, “Integral points on a del Pezzo surface over imaginary quadratic fields”, Res. number theory, 10:4 (2024)
Anton Shafarevich, “Euler-symmetric projective toric varieties and additive actions”, Indagationes Mathematicae, 34:1 (2023), 42
I. V. Arzhantsev, Yu. I. Zaitseva, “Equivariant completions of affine spaces”, Russian Math. Surveys, 77:4 (2022), 571–650
Sergey Dzhunusov, “On uniqueness of additive actions on complete toric varieties”, Journal of Algebra, 609 (2022), 642
Pieropan M., Smeets A., Tanimoto Sh., Varilly-Alvarado A., “Campana Points of Bounded Height on Vector Group Compactifications”, Proc. London Math. Soc., 123:1 (2021), 57–101
Sergey Dzhunusov, “Additive actions on complete toric surfaces”, Int. J. Algebra Comput., 31:01 (2021), 19
Anton Shafarevich, “Additive Actions on Toric Projective Hypersurfaces”, Results Math, 76:3 (2021)
Sergey Dzhunusov, Yulia Zaitseva, “Commutative algebraic monoid structures on affine surfaces”, Forum Mathematicum, 33:1 (2021), 177
Huang Zh., Montero P., “Fano Threefolds as Equivariant Compactifications of the Vector Group”, Mich. Math. J., 69:2 (2020), 341–368
Derenthal U., Pieropan M., “The Split Torsor Method For Manin'S Conjecture”, Trans. Am. Math. Soc., 373:12 (2020), 8485–8524
Frei Ch., Loughran D., Sofos E., “Rational Points of Bounded Height on General Conic Bundle Surfaces”, Proc. London Math. Soc., 117:2 (2018), 407–440
Arzhantsev I., Romaskevich E., “Additive actions on toric varieties”, Proc. Amer. Math. Soc., 145:5 (2017), 1865–1879
Frei Ch., Pieropan M., “O-minimality on twisted universal torsors and Manin's conjecture over number fields”, Ann. Sci. Ec. Norm. Super., 49:4 (2016), 757–811
Baier S., Derenthal U., “Quadratic Congruences on Average and Rational Points on Cubic Surfaces”, Acta Arith., 171:2 (2015), 145–171
Ulrich Derenthal, Daniel Loughran, “Equivariant Compactifications of Two-Dimensional Algebraic Groups”, Proceedings of the Edinburgh Mathematical Society, 58:1 (2015), 149
Derenthal U., “Singular Del Pezzo Surfaces Whose Universal Torsors Are Hypersurfaces”, Proc. London Math. Soc., 108:3 (2014), 638–681
Le Boudec P., “Affine Congruences and Rational Points on a Certain Cubic Surface”, Algebr. Number Theory, 8:5 (2014), 1259–1296
Ivan Arzhantsev, Andrey Popovskiy, Springer Proceedings in Mathematics & Statistics, 79, Automorphisms in Birational and Affine Geometry, 2014, 17
Le Boudec P., “Manin's conjecture for two quartic del Pezzo surfaces with $3\mathbf A_1$ and $\mathbf A_1+\mathbf A_2$ singularity types”, Acta Arith., 151:2 (2012), 109–163