Abstract:
The topology of a new intagrable version of a nonholonomic Suslov problem is considered. It is shown that the integral manifolds are either Liouville tori with quasiperiodic windings or closed two-dimensional surfaces almost all trajectories on which are closed. Bibl. 18 titles.
Citation:
E. V. Anoshkina, T. L. Kunii, G. G. Okuneva, Y. Shinagawa, “On the topology of an integrable variant of a nonholonomic Suslov problem”, Differential geometry, Lie groups and mechanics. Part 15–2, Zap. Nauchn. Sem. POMI, 235, POMI, St. Petersburg, 1996, 7–21; J. Math. Sci. (New York), 94:4 (1999), 1448–1456
\Bibitem{AnoKunOku96}
\by E.~V.~Anoshkina, T.~L.~Kunii, G.~G.~Okuneva, Y.~Shinagawa
\paper On the topology of an integrable variant of a~nonholonomic Suslov problem
\inbook Differential geometry, Lie groups and mechanics. Part~15--2
\serial Zap. Nauchn. Sem. POMI
\yr 1996
\vol 235
\pages 7--21
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3641}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1856089}
\zmath{https://zbmath.org/?q=an:1005.37031}
\transl
\jour J. Math. Sci. (New York)
\yr 1999
\vol 94
\issue 4
\pages 1448--1456
\crossref{https://doi.org/10.1007/BF02365196}
Linking options:
https://www.mathnet.ru/eng/znsl3641
https://www.mathnet.ru/eng/znsl/v235/p7
This publication is cited in the following 1 articles: