Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2009, Volume 370, Pages 111–131 (Mi znsl3534)  

This article is cited in 5 scientific papers (total in 5 papers)

Limits shapes of Young diagrams. Two elementary approaches

F. Petrov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (657 kB) Citations (5)
References:
Abstract: We present a techniques for obtaining the limit shapes of Yong diagrams with respect to multiplicative measures, which arise in statistical mechanics. Our approach does not use neither complex analysis, nor Tauberian theorems. Also, we get the limit shape for bounded and unbounded partitions with respect to uniform measure, avoiding even generating functions. Bibl. – 6 titles.
Key words and phrases: partitions, limit shape.
Received: 08.10.2009
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 166, Issue 1, Pages 63–74
DOI: https://doi.org/10.1007/s10958-010-9845-9
Bibliographic databases:
Document Type: Article
UDC: 519.212.2+519.116
Language: Russian
Citation: F. Petrov, “Limits shapes of Young diagrams. Two elementary approaches”, Boundary-value problems of mathematical physics and related problems of function theory. Part 40, Zap. Nauchn. Sem. POMI, 370, POMI, St. Petersburg, 2009, 111–131; J. Math. Sci. (N. Y.), 166:1 (2010), 63–74
Citation in format AMSBIB
\Bibitem{Pet09}
\by F.~Petrov
\paper Limits shapes of Young diagrams. Two elementary approaches
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~40
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 370
\pages 111--131
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3534}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 166
\issue 1
\pages 63--74
\crossref{https://doi.org/10.1007/s10958-010-9845-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77949294422}
Linking options:
  • https://www.mathnet.ru/eng/znsl3534
  • https://www.mathnet.ru/eng/znsl/v370/p111
  • This publication is cited in the following 5 articles:
    1. Walter Bridges, “Limit shapes for unimodal sequences”, Int. J. Number Theory, 19:05 (2023), 1111  crossref
    2. Dalal A.J., Lohss A., Parry D., “Statistical Structure of Concave Compositions”, Ann. Comb., 25:3 (2021), 729–756  crossref  mathscinet  isi
    3. Melczer S., Panova G., Pemantle R., “Counting Partitions Inside a Rectangle”, SIAM Discret. Math., 34:4 (2020), 2388–2410  crossref  mathscinet  zmath  isi  scopus
    4. Tadahisa Funaki, “Equivalence of Ensembles Under Inhomogeneous Conditioning and Its Applications to Random Young Diagrams”, J Stat Phys, 154:1-2 (2014), 588  crossref
    5. Dan Beltoft, Cédric Boutillier, Nathanaël Enriquez, “Random Young Diagrams in a Rectangular Box”, Mosc. Math. J., 12:4 (2012), 719–745  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:654
    Full-text PDF :284
    References:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025