Loading [MathJax]/jax/output/SVG/config.js
Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2009, Volume 369, Pages 202–223 (Mi znsl3527)  

This article is cited in 36 scientific papers (total in 36 papers)

Sufficient conditions of the existence of trapped modes in problems of the linear theory of surface waves

S. A. Nazarov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
References:
Abstract: A new method is proposed for searching for trapped modes in several problems of the linear water-wave theory. In the case of submerged bodies the method gives simple proofs of known results and in the case of surface piercing bodies the observed condition in completely new. Bibl. – 24 titles.
Key words and phrases: eigenvalues beneath the threshold of a continuous spectrum, trapped modes, surface waves.
Received: 15.09.2009
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 167, Issue 5, Pages 713–725
DOI: https://doi.org/10.1007/s10958-010-9956-3
Bibliographic databases:
Document Type: Article
UDC: 519.958:531.327.13
Language: Russian
Citation: S. A. Nazarov, “Sufficient conditions of the existence of trapped modes in problems of the linear theory of surface waves”, Mathematical problems in the theory of wave propagation. Part 38, Zap. Nauchn. Sem. POMI, 369, POMI, St. Petersburg, 2009, 202–223; J. Math. Sci. (N. Y.), 167:5 (2010), 713–725
Citation in format AMSBIB
\Bibitem{Naz09}
\by S.~A.~Nazarov
\paper Sufficient conditions of the existence of trapped modes in problems of the linear theory of surface waves
\inbook Mathematical problems in the theory of wave propagation. Part~38
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 369
\pages 202--223
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3527}
\elib{https://elibrary.ru/item.asp?id=15314019}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 167
\issue 5
\pages 713--725
\crossref{https://doi.org/10.1007/s10958-010-9956-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953913560}
Linking options:
  • https://www.mathnet.ru/eng/znsl3527
  • https://www.mathnet.ru/eng/znsl/v369/p202
  • This publication is cited in the following 36 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:508
    Full-text PDF :110
    References:89
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025