Abstract:
We present a sketch of the Fourier theory on the infinite symmetric group S∞. As a dual space to S∞, we suggest the space (groupoid) of Young bitableaux B. The Fourier transform of a function on the infinite symmetric group is a martingale with respect to the so-called
full Plancherel measure on the groupoid of bitableaux. The Plancherel formula determines an isometry of the space l2(S∞,m) of square integrable functions on the infinite symmetric group with the counting measure and the space L2(B,˜μ) of square integrable functions on the groupoid of bitableaux with the full Plancherel measure.
Citation:
A. M. Vershik, N. V. Tsilevich, “On the Fourier transform on the infinite symmetric group”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Zap. Nauchn. Sem. POMI, 325, POMI, St. Petersburg, 2005, 61–82; J. Math. Sci. (N. Y.), 138:3 (2006), 5663–5673
\Bibitem{VerTsi05}
\by A.~M.~Vershik, N.~V.~Tsilevich
\paper On the Fourier transform on the infinite symmetric group
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~XII
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 325
\pages 61--82
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl350}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2160319}
\zmath{https://zbmath.org/?q=an:1078.43002}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 138
\issue 3
\pages 5663--5673
\crossref{https://doi.org/10.1007/s10958-006-0334-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748640593}
Linking options:
https://www.mathnet.ru/eng/znsl350
https://www.mathnet.ru/eng/znsl/v325/p61
This publication is cited in the following 7 articles:
V. M. Buchstaber, M. I. Gordin, I. A. Ibragimov, V. A. Kaimanovich, A. A. Kirillov, A. A. Lodkin, S. P. Novikov, A. Yu. Okounkov, G. I. Olshanski, F. V. Petrov, Ya. G. Sinai, L. D. Faddeev, S. V. Fomin, N. V. Tsilevich, Yu. V. Yakubovich, “Anatolii Moiseevich Vershik (on his 80th birthday)”, Russian Math. Surveys, 69:1 (2014), 165–179
Oner T., “Infinite Symmetric Groups”, ARS Comb., 107 (2012), 129–140
Strahov E., “Z-measures on partitions related to the infinite Gelfand pair (S(2∞),H(∞))”, J. Algebra, 323:2 (2010), 349–370
Tsilevich N.V., Vershik A.M., “Induced representations of the infinite symmetric group”, Pure Appl. Math. Q., 3:4, Part 1 (2007), 1005–1026
Vershik A.M. Tsilevich N.V., “Induced Representations of the Infinite Symmetric Group and their Spectral Theory”, Dokl. Math., 75:1 (2007), 1–4
P. P. Nikitin, “The centralizer algebra of the diagonal action of the group GLn(C) in a mixed tensor space”, J. Math. Sci. (N. Y.), 141:4 (2007), 1479–1493
Tsilevich N.V., Vershik A.M., “On Different Models of Representations of the Infinite Symmetric Group”, Adv. Appl. Math., 37:4 (2006), 526–540