Abstract:
In this work we consider infinite-dimensional Lie-algebra Wn⋉g⊗On of formal vector fields on n-dimensional plane, extended by formal g-valued functions of n variables. Here g is an arbitrary Lie algebra. We show that the cochain complex of this Lie algebra is quasi-isomorphic to the quotient of Weyl algebra of (gln⊕g) by (2n+1)-st term of standard filtration. We consider separately the case of reductive Lie algebra g. We show how one can use the methods of formal geometry, to construct characteristic classes of bundles. For every
G-bundle on n-dimensional complex manifold we construct a natural
homomorphism from ring A of relative cohomologies of Lie algebra Wn⋉g⊗On to ring of tohomologies of the manifold. We show that generators of ring
A mapped under this homomorphism to characteristic classes of tangent and G-bundles.
Citation:
A. S. Khoroshkin, “Lie algebra of formal vector fields extended by formal g-valued functions”, Questions of quantum field theory and statistical physics. Part 19, Zap. Nauchn. Sem. POMI, 335, POMI, St. Petersburg, 2006, 205–230; J. Math. Sci. (N. Y.), 143:1 (2007), 2816–2830
\Bibitem{Kho06}
\by A.~S.~Khoroshkin
\paper Lie algebra of formal vector fields extended by formal $\mathbf g$-valued functions
\inbook Questions of quantum field theory and statistical physics. Part~19
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 335
\pages 205--230
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl216}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2269758}
\zmath{https://zbmath.org/?q=an:1117.17008}
\elib{https://elibrary.ru/item.asp?id=9307447}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 143
\issue 1
\pages 2816--2830
\crossref{https://doi.org/10.1007/s10958-007-0167-5}
\elib{https://elibrary.ru/item.asp?id=13548638}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247354057}
Linking options:
https://www.mathnet.ru/eng/znsl216
https://www.mathnet.ru/eng/znsl/v335/p205
This publication is cited in the following 3 articles:
Bytsenko A.A., Chaichian M., Tureanu A., Williams F.L., “Brst-Invariant Deformations of Geometric Structures in Topological Field Theories”, Int. J. Mod. Phys. A, 28:16 (2013)
Bytsenko A.A., “BRST-invariant deformations of geometric structures in sigma models”, Internat. J. Modern Phys. A, 26:22 (2011), 3769–3780
Bytsenko A.A., “Deformations of geometric structures in topological sigma models”, XXIX Workshop on Geometric Methods in Physics, AIP Conf. Proc., 1307, Amer. Inst. Phys., Melville, NY, 2010, 44–52