Abstract:
This paper deals with symplectic spaces over noncommutative rings of a special type, in which unique division by 2 is impossible. An application of the results obtained is a description of the multiplicative group of certain local fields that play an important role in determining the Galois group of the algebraic closure of extensions of the field of 2-adic numbers.
Citation:
I. G. Zel'venskii, “The reduced multiplicative group of a tamely ramified extension of a local field”, Modules and algebraic groups, Zap. Nauchn. Sem. LOMI, 114, "Nauka", Leningrad. Otdel., Leningrad, 1982, 131–136; J. Soviet Math., 27:4 (1984), 2928–2932
\Bibitem{Zel82}
\by I.~G.~Zel'venskii
\paper The reduced multiplicative group of a tamely ramified extension of a local field
\inbook Modules and algebraic groups
\serial Zap. Nauchn. Sem. LOMI
\yr 1982
\vol 114
\pages 131--136
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1771}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=669564}
\zmath{https://zbmath.org/?q=an:0549.12011|0532.12013}
\transl
\jour J. Soviet Math.
\yr 1984
\vol 27
\issue 4
\pages 2928--2932
\crossref{https://doi.org/10.1007/BF01410745}
Linking options:
https://www.mathnet.ru/eng/znsl1771
https://www.mathnet.ru/eng/znsl/v114/p131
This publication is cited in the following 1 articles:
Lloyd Simons, “The Galois‐equivariant Structure of the Norm Residue Symbol in Tamely Ramified‐extensions of 2‐adic Number Fields”, Mathematische Nachrichten, 169:1 (1994), 267