|
Zapiski Nauchnykh Seminarov POMI, 2008, Volume 355, Pages 163–172
(Mi znsl1705)
|
|
|
|
Radial limits of positive solutions to the Darboux equation
E. S. Dubtsov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Assume that a positive function u satisfies the Darboux equation
Δu=(α−1)y∂u∂y,α>0,
in the upper half-space Rd+1+. We investigate Bloch type conditions that guarantee the following property: for any a∈(0,+∞), the set where the radial limit of u is equal to a, is large in the sense of the Hausdorff dimension. Bibl. – 6 titles.
Received: 25.01.2008
Citation:
E. S. Dubtsov, “Radial limits of positive solutions to the Darboux equation”, Investigations on linear operators and function theory. Part 36, Zap. Nauchn. Sem. POMI, 355, POMI, St. Petersburg, 2008, 163–172; J. Math. Sci. (N. Y.), 156:5 (2009), 813–818
Linking options:
https://www.mathnet.ru/eng/znsl1705 https://www.mathnet.ru/eng/znsl/v355/p163
|
Statistics & downloads: |
Abstract page: | 234 | Full-text PDF : | 55 | References: | 63 |
|