Loading [MathJax]/jax/output/SVG/config.js
Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Vychislitelnaya Matematika i Informatika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. YuUrGU. Ser. Vych. Matem. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Vychislitelnaya Matematika i Informatika", 2016, Volume 5, Issue 1, Pages 47–62
DOI: https://doi.org/10.14529/cmse160105
(Mi vyurv101)
 

This article is cited in 4 scientific papers (total in 4 papers)

Computational Mathematics

Accuracy of the numerical solution of the equations of diffusion-convection using the difference schemes of second and fourth order approximation error

A. I. Sukhinova, A. E. Chistakovb, M. V. Iakobovskiic

a Taganrog Institute of A.P. Chekhov (branch) of the Rostov State University of Economics (RINH), Taganrog, Russian Federation
b Scientific Research Institute of Multiprocessing Computing Systems of A.V. Kalyaeva Southern Federal University, Taganrog, Russian Federation
c Keldysh Institute of Applied Mathematics RAS, Moscow, Russian Federation
References:
Abstract: The paper deals with the scheme of the second and fourth order approximation error for solving convection-diffusion problems. To model initial boundary value problem in the case when the functions of the right and the initial condition can be represented by finite sums of Fourier series in the trigonometric basis, we investigated the accuracy of difference schemes. It was found that the accuracy of the numerical solution depends on the number of units attributable to half the wavelength corresponding to the most high frequency harmonics in the final sum of the Fourier series, necessary to describe the behavior of calculated objects. The dependence of the diffusion approximation error terms difference schemes of second and fourth order of accuracy of the number of nodes. The comparison of the calculation results of two-dimensional convection-diffusion problems and tasks of the Poisson-based schemes of the second and fourth order accuracy. In the expediency of transition to a scheme of high accuracy for solving applied problems of the estimates and is easy to obtain the numerical values of the gain in computation time by using schemes of higher order accuracy.
Keywords: accuracy difference schemes, convection-diffusion equation, approximation error.
Received: 03.09.2015
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: A. I. Sukhinov, A. E. Chistakov, M. V. Iakobovskii, “Accuracy of the numerical solution of the equations of diffusion-convection using the difference schemes of second and fourth order approximation error”, Vestn. YuUrGU. Ser. Vych. Matem. Inform., 5:1 (2016), 47–62
Citation in format AMSBIB
\Bibitem{SukChiIak16}
\by A.~I.~Sukhinov, A.~E.~Chistakov, M.~V.~Iakobovskii
\paper Accuracy of the numerical solution of the equations of diffusion-convection using the difference schemes of second and fourth order approximation error
\jour Vestn. YuUrGU. Ser. Vych. Matem. Inform.
\yr 2016
\vol 5
\issue 1
\pages 47--62
\mathnet{http://mi.mathnet.ru/vyurv101}
\crossref{https://doi.org/10.14529/cmse160105}
\elib{https://elibrary.ru/item.asp?id=25629792}
Linking options:
  • https://www.mathnet.ru/eng/vyurv101
  • https://www.mathnet.ru/eng/vyurv/v5/i1/p47
  • This publication is cited in the following 4 articles:
    1. A. I. Sukhinov, Y. V. Belova, A. E. Chistyakov, “Mathematical modeling of biogeochemical cycles in coastal systems of the South of Russia”, Math. Models Comput. Simul., 13:6 (2021), 930–942  mathnet  crossref  crossref
    2. A. I. Sukhinov, A. E. Chistyakov, E. A. Protsenko, A. M. Atayan, “Lineinaya kombinatsiya skhem «kabare» i «krest» s vesovymi koeffitsientami, poluchennymi iz usloviya minimizatsii poryadka pogreshnosti approksimatsii”, Chebyshevskii sb., 21:4 (2020), 243–256  mathnet  crossref
    3. A. I. Sukhinov, A. E. Chistyakov, “CABARET difference scheme with improved dispersion properties”, Math. Models Comput. Simul., 11:6 (2019), 867–876  mathnet  crossref  crossref  elib
    4. A. A. Fomin, L. N. Fomina, “The use of the line-by-line recurrent method for solving systems of difference elliptic equations with nine-diagonal matrices”, Vestn. YuUrGU. Ser. Vych. matem. inform., 8:2 (2019), 5–21  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Vychislitelnaya Matematika i Informatika"
    Statistics & downloads:
    Abstract page:735
    Full-text PDF :224
    References:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025