Loading [MathJax]/jax/output/CommonHTML/jax.js
Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2014, Volume 7, Issue 4, Pages 5–21
DOI: https://doi.org/10.14529/mmp140401
(Mi vyuru234)
 

This article is cited in 7 scientific papers (total in 7 papers)

Review Articles

On a class of Sobolev-type equations

T. G. Sukacheva, A. O. Kondyukov

Novgorod State University, Velikiy Novgorod, Russian Federation
Full-text PDF (508 kB) Citations (7)
References:
Abstract: The article surveys the works of T. G. Sukacheva and her students studying the models of incompressible viscoelastic Kelvin–Voigt fluids in the framework of the theory of semilinear Sobolev-type equations. We focus on the unstable case because of greater generality. The idea is illustrated by an example: the non-stationary thermoconvection problem for the order 0 Oskolkov model. Firstly, we study the abstract Cauchy problem for a semilinear nonautonomous Sobolev-type equation. Then, we treat the corresponding initial-boundary value problem as its concrete realization. We prove the existence and uniqueness of a solution to the stated problem. The solution itself is a quasi-stationary semi-trajectory. We describe the extended phase space of the problem. Other problems of hydrodynamics can also be investigated in this way: for instance, the linearized Oskolkov model, Taylor's problem, as well as some models describing the motion of an incompressible viscoelastic Kelvin–Voigt fluid in the magnetic field of the Earth.
Keywords: Sobolev type equations; incompressible viscoelastic fluids; relatively p-sectorial operators; extended phase spaces.
Received: 15.09.2014
Document Type: Article
UDC: 517.9
MSC: 35K70
Language: English
Citation: T. G. Sukacheva, A. O. Kondyukov, “On a class of Sobolev-type equations”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:4 (2014), 5–21
Citation in format AMSBIB
\Bibitem{SukKon14}
\by T.~G.~Sukacheva, A.~O.~Kondyukov
\paper On a class of Sobolev-type equations
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2014
\vol 7
\issue 4
\pages 5--21
\mathnet{http://mi.mathnet.ru/vyuru234}
\crossref{https://doi.org/10.14529/mmp140401}
Linking options:
  • https://www.mathnet.ru/eng/vyuru234
  • https://www.mathnet.ru/eng/vyuru/v7/i4/p5
  • This publication is cited in the following 7 articles:
    1. D. Z. Dhumd, Shatha A. Haddad, “ONSET OF DOUBLE-DIFFUSIVE CONVECTION WITH A KELVIN–VOIGT FLUID OF VARIABLE ORDER”, Special Topics Rev Porous Media, 15:3 (2024), 1  crossref
    2. N. V. Kalenova, A. M. Romanenkov, Springer Proceedings in Earth and Environmental Sciences, Physical and Mathematical Modeling of Earth and Environment Processes—2022, 2023, 413  crossref
    3. S. A. Zagrebina, A. S. Konkina, “The non-classical models of mathematical physics the multipoint initial-final value condition”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022), 60–83  mathnet  mathnet  crossref
    4. B. Straughan, “Instability thresholds for thermal convection in a Kelvin–Voigt fluid of variable order”, Rend. Circ. Mat. Palermo, II. Ser, 71:1 (2022), 187  crossref
    5. Alevtina V. Keller, Minzilia A. Sagadeeva, Springer Proceedings in Mathematics & Statistics, 325, Semigroups of Operators – Theory and Applications, 2020, 263  crossref
    6. A. O. Kondyukov, T. G. Sukacheva, S. I. Kadchenko, L. S. Ryazanova, “Computational experiment for a class of mathematical models of magnetohydrodynamics”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 10:1 (2017), 149–155  mathnet  crossref  elib
    7. N. A. Manakova, G. A. Sviridyuk, “Neklassicheskie uravneniya matematicheskoi fiziki. Fazovye prostranstva polulineinykh uravnenii sobolevskogo tipa”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 8:3 (2016), 31–51  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:314
    Full-text PDF :140
    References:70
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025