Loading [MathJax]/jax/output/SVG/config.js
Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika", 2024, Volume 16, Issue 3, Pages 27–31
DOI: https://doi.org/10.14529/mmph240304
(Mi vyurm604)
 

Mathematics

Invariant spaces of stochastic systems of Oskolkov equations

O. G. Kitaeva

South Ural State University, Chelyabinsk, Russian Federation
References:
Abstract: This paper considers a linear stochastic system of Oskolkov equations, which models the flow of a viscoelastic incompressible fluid and studies the stability of the solutions of this system. For this purpose, the stochastic system of Oskolkov equations is considered in the form of a Sobolev-type stochastic linear equation. The desired value is a stochastic process that does not have a Newton–Leibniz derivative at any point. Therefore, we use the derivative of the stochastic process in the sense of Nelson–Gliklich. It is shown that for certain parameter values characterizing the elastic and viscous properties of a liquid there are unstable and stable invariant spaces of a stochastic system of Oskolkov equations.
Keywords: stochastic system of Oskolkov equations, Nelson-Gliklich equation, invariant spaces.
Received: 15.07.2024
Document Type: Article
UDC: 517.9
Language: Russian
Citation: O. G. Kitaeva, “Invariant spaces of stochastic systems of Oskolkov equations”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 16:3 (2024), 27–31
Citation in format AMSBIB
\Bibitem{Kit24}
\by O.~G.~Kitaeva
\paper Invariant spaces of stochastic systems of Oskolkov equations
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2024
\vol 16
\issue 3
\pages 27--31
\mathnet{http://mi.mathnet.ru/vyurm604}
\crossref{https://doi.org/10.14529/mmph240304}
Linking options:
  • https://www.mathnet.ru/eng/vyurm604
  • https://www.mathnet.ru/eng/vyurm/v16/i3/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:76
    Full-text PDF :14
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025