Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika", 2024, Volume 16, Issue 3, Pages 5–11
DOI: https://doi.org/10.14529/mmph240301
(Mi vyurm601)
 

Mathematics

Cubic equations, Newton quadrilaterals, and geometric constructions

N. S. Astapov, N. K. Noland

Lavrentyev Institute of Hudrodynamics SB RAS, Novosibirsk, Russian Federation
References:
Abstract: This article discusses the possibility of constructing with a quadrilateral inscribed in a semicircle a ruler and compass. It shows that the problem of constructing an isosceles triangle from its three bisectors is equivalent to the trisection of an angle. Examples are given of parametric families of equations of the third and sixth degree, for which all roots are expressed through square radicals. A condition is identified under which a sixth-degree polynomial is factorized by third-degree polynomials in canonical form. All the factorizations are valid for polynomials with arbitrary complex coefficients.
Keywords: Newton quadrilaterals, trisection of an angle, cubic equations, solution in square radicals, regular polygons.
Received: 15.05.2024
Document Type: Article
UDC: 512.13, 512.62, 514.11
Language: Russian
Citation: N. S. Astapov, N. K. Noland, “Cubic equations, Newton quadrilaterals, and geometric constructions”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 16:3 (2024), 5–11
Citation in format AMSBIB
\Bibitem{AstNol24}
\by N.~S.~Astapov, N.~K.~Noland
\paper Cubic equations, Newton quadrilaterals, and geometric constructions
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2024
\vol 16
\issue 3
\pages 5--11
\mathnet{http://mi.mathnet.ru/vyurm601}
\crossref{https://doi.org/10.14529/mmph240301}
Linking options:
  • https://www.mathnet.ru/eng/vyurm601
  • https://www.mathnet.ru/eng/vyurm/v16/i3/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:96
    Full-text PDF :20
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025