Loading [MathJax]/jax/output/SVG/config.js
Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika", 2024, Volume 16, Issue 2, Pages 5–11
DOI: https://doi.org/10.14529/mmph240201
(Mi vyurm592)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

Functional equations as mathematical models of cyclic shift coupling problems on complex curves

V. L. Dil'man

South Ural State University, Chelyabinsk, Russian Federation
Full-text PDF (528 kB) Citations (1)
References:
Abstract: The paper considers linear functional equations with a shift function having a nonzero derivative satisfying the Helder condition on an arbitrary piecewise smooth curve. Such equations are studied in connection with the theory of boundary value problems for analytical functions, which are a mathematical tool in the study of mathematical models of elasticity theory in which the conjugation conditions contain a boundary shift. The shift function acts cyclically on a set of simple curves forming a given curve, and except the ends of simple curves, there are no periodic points relative to the shift function. The purpose of the study is to find conditions for the existence and uniqueness of a solution (and in the case of non–uniqueness of the cardinality of the set of solutions) of such equations in the classes of Helder and primitive Lebesgue functions with a coefficient and the right part of the same classes.
Keywords: linear functional equations of one variable, Helder classes of functions, classes of primitive from Lebesgue functions, piecewise smooth curves.
Received: 12.03.2024
Document Type: Article
UDC: 517.965
Language: Russian
Citation: V. L. Dil'man, “Functional equations as mathematical models of cyclic shift coupling problems on complex curves”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 16:2 (2024), 5–11
Citation in format AMSBIB
\Bibitem{Dil24}
\by V.~L.~Dil'man
\paper Functional equations as mathematical models of cyclic shift coupling problems on complex curves
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2024
\vol 16
\issue 2
\pages 5--11
\mathnet{http://mi.mathnet.ru/vyurm592}
\crossref{https://doi.org/10.14529/mmph240201}
Linking options:
  • https://www.mathnet.ru/eng/vyurm592
  • https://www.mathnet.ru/eng/vyurm/v16/i2/p5
  • This publication is cited in the following 1 articles:
    1. V. L. Dilman, T. V. Karpeta, “Nepreryvnye resheniya lineinykh funktsionalnykh uravnenii na kusochno-gladkikh krivykh v matematicheskikh modelyakh kraevykh zadach so sdvigom”, J. Comp. Eng. Math., 11:2 (2024), 11–21  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:117
    Full-text PDF :26
    References:24
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025