|
Mathematics
The analysis and processing of information for one stochastic system of the Sobolev type
K. V. Perevozchikova South Ural State University, Chelyabinsk, Russian Federation
Abstract:
This article is devoted to the analysis and processing of information for a stochastic model based on the equation of potential distribution in a crystalline semiconductor with the Nelson–Glicklich derivative and the Showalter–Sidorov initial condition. By semiconductors, we mean substances that have a finite electrical conductivity that rapidly increases with increasing temperature. It is assumed that the initial experimental data may be affected by random noise, which leads to the study of the stochastic model. An analysis of the stochastic model of the potential distribution in a crystalline semiconductor is given. Conditions under which there are step-by-step solutions of the model under study with the Showalter–Sidorov initial condition are found. Further, on the basis of the theoretical results, an algorithm for the numerical analysis of the system is given. Its implementation is presented in the form of a computational experiment, which is necessary for the further processing of information.
Keywords:
stochastic model of potential distribution in a crystalline semiconductor, analysis and processing of information, the Nelson–Glicklich derivative, Sobolev type equations.
Received: 14.04.2023
Citation:
K. V. Perevozchikova, “The analysis and processing of information for one stochastic system of the Sobolev type”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 15:2 (2023), 14–20
Linking options:
https://www.mathnet.ru/eng/vyurm552 https://www.mathnet.ru/eng/vyurm/v15/i2/p14
|
Statistics & downloads: |
Abstract page: | 86 | Full-text PDF : | 15 | References: | 22 |
|