Loading [MathJax]/jax/output/CommonHTML/jax.js
Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2015, Issue 3(28), Pages 27–33
DOI: https://doi.org/10.15688/jvolsu1.2015.3.3
(Mi vvgum65)
 

This article is cited in 4 scientific papers (total in 4 papers)

Applied mathematics

Triangulation algorithm based on empty convex set condition

V. A. Klyachin

Volgograd State University
Full-text PDF (365 kB) Citations (4)
References:
Abstract: The article is devoted to generalization of Delaunay triangulation. We suggest to consider empty condition for special convex sets. For given finite set PRn we shall say that empty condition for convex set BRn is fullfiled if PB=PB. Let Φ=Φα,αA be a family of compact convex sets with non empty inner. Consider some nondegenerate simplex SRn with vertexes p0,...,pn. We define the girth set B(S)Φ if qiB(S),i=0,1,...,n. We suppose that the family Φ has the property: for arbitrary nondegenerate simplex S there is only one the girth set B(S). We prove the following main result.
Theorem 1. If the family Φ=Φα,αA of convex sets have the pointed above property then for the girth sets it is true:
  • The set B(S) is uniquely determined by any simplex with vertexes on B(S).
  • Let S1,S2 be two nondegenerate simplexes such that B(S1)B(S2). If the intersection B(S1)B(S2) is not empty, then the intersection of boundaries B(S1),B(S2) is (n2)-dimensional convex surface, lying in some hyperplane.
  • If two simplexes S1 and S2 don't intersect by inner points and have common (n1)-dimensional face G and A, B are vertexes don't belong to face G and vertex B of simplex B(S2) such that BB(S1) then B(S2) does not contain the vertex A of simplex S1.

These statements allow us to define Φ-triangulation correctly by the following way. The given triangulation T of finite set PRn is called Φ-triangulation if for all simlex ST the girth set B(S)Phi is empty. In the paper we give algorithm for construct Φ-triangulation arbitrary finite set PRn. Besides we describe exapmles of families Φ for which we prove the existence and uniqueness of girth set B(S) for arbitrary nondegenerate simplex S.
Keywords: triangulation, empty shpere condition, Delaunay triangulation, convex set, convex function, convex hull.
Funding agency Grant number
Russian Foundation for Basic Research 15-41-02517
Document Type: Article
UDC: 514.142.2+514.174.6
BBC: 32.973.26-018.2
Language: Russian
Citation: V. A. Klyachin, “Triangulation algorithm based on empty convex set condition”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2015, no. 3(28), 27–33
Citation in format AMSBIB
\Bibitem{Kly15}
\by V.~A.~Klyachin
\paper Triangulation algorithm based on empty convex set condition
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2015
\issue 3(28)
\pages 27--33
\mathnet{http://mi.mathnet.ru/vvgum65}
\crossref{https://doi.org/10.15688/jvolsu1.2015.3.3}
Linking options:
  • https://www.mathnet.ru/eng/vvgum65
  • https://www.mathnet.ru/eng/vvgum/y2015/i3/p27
  • This publication is cited in the following 4 articles:
    1. V. A. Klyachin, “Approximation of the gradient of a function on the basis of a special class of triangulations”, Izv. Math., 82:6 (2018), 1136–1147  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. V. A. Klyachin, M. I. Kazanin, “Postroenie reshenii uravneniya tipa Monzha–Ampera na osnove $\Phi$-triangulyatsii”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2017, no. 1(38), 6–12  mathnet  crossref
    3. A. A. Klyachin, “Postroenie triangulyatsii ploskikh oblastei metodom izmelcheniya”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2017, no. 2(39), 18–28  mathnet  crossref
    4. V. A. Klyachin, E. G. Grigorieva, “Description of functionals that are minimized by $\Phi$-triangulations”, J. Math. Sci. (N. Y.), 241:3 (2019), 251–257  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
    Statistics & downloads:
    Abstract page:251
    Full-text PDF :148
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025