Loading [MathJax]/jax/output/CommonHTML/jax.js
Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2023, Volume 33, Issue 4, Pages 581–600
DOI: https://doi.org/10.35634/vm230404
(Mi vuu870)
 

MATHEMATICS

Inverse problem for the system of viscoelasticity in anisotropic media with tetragonal form of elasticity modulus

D. K. Durdievab, Z. R. Bozorovab, A. A. Boltayevabc

a Institute of Mathematics at the Academy of Sciences of the Republic of Uzbekistan, University str., 46, Tashkent, 100170, Uzbekistan
b Bukhara State University, Muhammad Ikbal str., 11, Bukhara, 200117, Uzbekistan
c North Caucasus Center for Mathematical Research, Vladikavkaz Scientific Center of the Russian Academy of Sciences, Williams str., 1, village of Mikhailovskoye, 363110, Russia
References:
Abstract: For the reduced canonical system of integro-differential equations of viscoelasticity, direct and inverse problems of determining the velocity field of elastic waves and the relaxation matrix are considered. The problems are replaced by a closed system of Volterra integral equations of the second kind with respect to the Fourier transform in the variables x1 and x2 for the solution of the direct problem and unknowns of the inverse problem. Further, the method of contraction mappings in the space of continuous functions with a weighted norm is applied to this system. Thus, we prove global existence and uniqueness theorems for solutions of the problems.
Keywords: viscoelasticity, resolvent, inverse problem, hyperbolic system, Fourier transform
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075–02–2023–914
The research of the third author was financially supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 075–02–2023–914.
Received: 15.03.2023
Accepted: 20.11.2023
Bibliographic databases:
Document Type: Article
UDC: 517.968
MSC: 35F61, 35L50, 42A38
Language: English
Citation: D. K. Durdiev, Z. R. Bozorov, A. A. Boltayev, “Inverse problem for the system of viscoelasticity in anisotropic media with tetragonal form of elasticity modulus”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:4 (2023), 581–600
Citation in format AMSBIB
\Bibitem{DurBozBol23}
\by D.~K.~Durdiev, Z.~R.~Bozorov, A.~A.~Boltayev
\paper Inverse problem for the system of viscoelasticity in anisotropic media with tetragonal form of elasticity modulus
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2023
\vol 33
\issue 4
\pages 581--600
\mathnet{http://mi.mathnet.ru/vuu870}
\crossref{https://doi.org/10.35634/vm230404}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001145748100003}
Linking options:
  • https://www.mathnet.ru/eng/vuu870
  • https://www.mathnet.ru/eng/vuu/v33/i4/p581
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:167
    Full-text PDF :53
    References:39
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025