Loading [MathJax]/jax/output/SVG/config.js
Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2022, Volume 32, Issue 1, Pages 107–129
DOI: https://doi.org/10.35634/vm220108
(Mi vuu802)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Approximate method for solving the problem of conformal mapping of an arbitrary polygon to a unit circle

I. S. Polyanskii, K. O. Loginov

Russian Federation Security Guard Service Federal Academy, ul. Priborostroitel’naya, 35, Orel, 302024, Russia
References:
Abstract: In the article, an approximate analytical solution of the problem of conformal mapping of internal points of an arbitrary polygon to a unit circle is developed. At the preliminary stage, the conformal mapping problem is formulated as a boundary value problem (Schwartz problem). The latter is reduced to the solution of the Fredholm integral equation of the second kind with a Cauchy-type kernel with respect to an unknown complex density function at the boundary domain, followed by the calculation of the Cauchy integral. The developed approximate analytical solution is based on the Cauchy kernel decomposition in the Legendre polynomial system of the first and second kind. A priori and a posteriori estimates of the convergence and accuracy of the given solution are fulfilled. The exponential convergence of the solution in $L_2\left([0,1]\right)$ and the polynomial one in $C\left([0,1]\right)$ are defined. Calculations on test examples are given for a visual comparison of the effectiveness of the developed solution.
Keywords: conformal mapping, arbitrary polygon, Schwartz problem, logarithmic double layer potential, complex density function, Fredholm equation, Legendre polynomials.
Received: 26.03.2021
Accepted: 10.12.2021
Bibliographic databases:
Document Type: Article
UDC: 517.54
MSC: 30C20
Language: Russian
Citation: I. S. Polyanskii, K. O. Loginov, “Approximate method for solving the problem of conformal mapping of an arbitrary polygon to a unit circle”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:1 (2022), 107–129
Citation in format AMSBIB
\Bibitem{PolLog22}
\by I.~S.~Polyanskii, K.~O.~Loginov
\paper Approximate method for solving the problem of conformal mapping of an arbitrary polygon to a unit circle
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2022
\vol 32
\issue 1
\pages 107--129
\mathnet{http://mi.mathnet.ru/vuu802}
\crossref{https://doi.org/10.35634/vm220108}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4415773}
Linking options:
  • https://www.mathnet.ru/eng/vuu802
  • https://www.mathnet.ru/eng/vuu/v32/i1/p107
  • This publication is cited in the following 1 articles:
    1. Ivan S. Polyansky, “External barycentric coordinates for arbitrary polygons and an approximate method for calculating them”, Physics of Wave Processes and Radio Systems, 27:4 (2024), 29  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:306
    Full-text PDF :153
    References:62
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025