Loading [MathJax]/jax/output/SVG/config.js
Vestnik TVGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik TVGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2023, Issue 3, Pages 5–18
DOI: https://doi.org/10.26456/vtpmk692
(Mi vtpmk692)
 

Mathematical Modelling, Numerical Methods and Software Systems

Temperature distribution in a half-space containing spherical inclusion

A. O. Syromyasov, Yu. P. Edeleva

Ogarev Mordovia State University, Saransk
References:
Abstract: Description of thermodynamic processes in disperse media placed in containers and tubes becomes more precise if thermodynamic interaction of disperse particles and container walls is taken into account. The paper deals with spherical particle without internal heat sources. This particle is placed near a plane wall and distorts temperature distribution in a medium because of difference in heat conduction coefficients. Authors obtain that it is convenient to use reflection and continue the half-space bounded by the wall, thus replacing system “plane + sphere” by another one: “two symmetric spheres”. To solve Laplace equation in unbounded space authors use multipole expansion; structure of coefficients in this expansion depends on symmetry of particles' configuration and of boundary conditions. The paper also discusses possibility of limit transition from system “a large sphere + a small sphere” to system “plane + sphere” in order to solve a problem about a spherical particle in a half-space.
Keywords: thermodynamic interaction, Laplace equation, fictituous particle, multipole, nonlinear tensor function.
Received: 21.07.2023
Revised: 05.08.2023
Bibliographic databases:
Document Type: Article
UDC: 517.958:536.2
Language: Russian
Citation: A. O. Syromyasov, Yu. P. Edeleva, “Temperature distribution in a half-space containing spherical inclusion”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2023, no. 3, 5–18
Citation in format AMSBIB
\Bibitem{SyrEde23}
\by A.~O.~Syromyasov, Yu.~P.~Edeleva
\paper Temperature distribution in a half-space containing spherical inclusion
\jour Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.]
\yr 2023
\issue 3
\pages 5--18
\mathnet{http://mi.mathnet.ru/vtpmk692}
\crossref{https://doi.org/10.26456/vtpmk692}
\elib{https://elibrary.ru/item.asp?id=54770335}
Linking options:
  • https://www.mathnet.ru/eng/vtpmk692
  • https://www.mathnet.ru/eng/vtpmk/y2023/i3/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik TVGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics]
    Statistics & downloads:
    Abstract page:123
    Full-text PDF :44
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025