Processing math: 100%
Vestnik TVGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik TVGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2022, Issue 4, Pages 53–75
DOI: https://doi.org/10.26456/vtpmk649
(Mi vtpmk649)
 

This article is cited in 1 scientific paper (total in 1 paper)

Theory of Probability and Mathematical Statistics

Negative λ-binomial regression in dose-effect relationship

M. S. Tikhov

National Research Lobachevsky State University of Nizhny Novgorod
Full-text PDF (450 kB) Citations (1)
References:
Abstract: This paper is concern to the problem of estimating the distribution function and its quantiles in the dose-effect relationships with nonparametric negative λ-binomial regression. Here, a kernel-based estimators of the distribution function are proposed, of which kernel is weighted by the negative λ-binomial random variable at each covariate. Our estimates are consistent, that is, they converge to their optimal values in probability as n, the number of observations, grow to infinity. It is shown that these estimates have a smaller asymptotic variance in comparison, in particular, with estimates of the Nadaray-Watson type and other estimates. Nonparametric quantiles estimators obtained by inverting a kernel estimator of the distribution function are offered. It is shown that the asymptotic normality of this bias-adjusted estimator holds under some regularity conditions. In the first part, the relations between the moments of the negative λ-binomial distribution are analyzed. A new characterization of the Poisson distribution is obtened.
Keywords: negative λ-binomial response model, effective dose level, nonparametric estimate.
Received: 14.09.2022
Revised: 12.12.2022
Bibliographic databases:
Document Type: Article
UDC: 519.2
MSC: 62G10
Language: Russian
Citation: M. S. Tikhov, “Negative λ-binomial regression in dose-effect relationship”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2022, no. 4, 53–75
Citation in format AMSBIB
\Bibitem{Tik22}
\by M.~S.~Tikhov
\paper Negative $\lambda$-binomial regression in dose-effect relationship
\jour Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.]
\yr 2022
\issue 4
\pages 53--75
\mathnet{http://mi.mathnet.ru/vtpmk649}
\crossref{https://doi.org/10.26456/vtpmk649}
\elib{https://elibrary.ru/item.asp?id=50188923}
Linking options:
  • https://www.mathnet.ru/eng/vtpmk649
  • https://www.mathnet.ru/eng/vtpmk/y2022/i4/p53
  • This publication is cited in the following 1 articles:
    1. M. S. Tikhov, “Otsenivanie raspredelenii po vyborkam sluchainogo ob'ema”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2023, no. 4, 5–24  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik TVGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics]
    Statistics & downloads:
    Abstract page:564
    Full-text PDF :479
    References:350
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025