Abstract:
We consider an algebra of all finite languages with the concatenation operation. For one-symbol languages it is known that its theory is equivalent to the first-order arithmetic. Earlier it was proved that for regular languages a one-symbol algebra can be interpreted in multi-symbol algebras. Here we show how to define a one-symbol subalgebra in multi-symbol algebras for finite languages.
Citation:
S. M. Dudakov, “On definability of one-symbol languages in the monoid of finite languages with concatenation”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2020, no. 4, 5–13
\Bibitem{Dud20}
\by S.~M.~Dudakov
\paper On definability of one-symbol languages in the monoid of finite languages with concatenation
\jour Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.]
\yr 2020
\issue 4
\pages 5--13
\mathnet{http://mi.mathnet.ru/vtpmk601}
\crossref{https://doi.org/10.26456/vtpmk601}
\elib{https://elibrary.ru/item.asp?id=44503256}
Linking options:
https://www.mathnet.ru/eng/vtpmk601
https://www.mathnet.ru/eng/vtpmk/y2020/i4/p5
This publication is cited in the following 1 articles:
S. M. Dudakov, “O teorii monoida konechnykh podmnozhestv dlya odnoi abelevoi gruppy krucheniya”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2021, no. 2, 39–55