Abstract:
We consider a two-point (including periodic) boundary value problem for the following system of differential equations that are not resolved with respect to the derivative of the desired function:
$$ f_i (t, x, \dot {x}, \dot {x}_i) = 0, \ \ i = \overline{1, n}. $$
Here, for any $i = \overline{1, n},$ the function $f_i: [0,1] \times \mathbb{R}^n \times \mathbb {R}^n \times \mathbb{R} \to \mathbb {R}$ is measurable in the first argument, continuous in the last argument, right-continuous, and satisfies the special condition of monotonicity in each component of the second and third arguments.
Assertions about the existence and two-sided estimates of solutions (of the type of Chaplygin's theorem on differential inequality) are obtained. Conditions for the existence of the largest and the smallest (with respect to a special order) solution are also obtained. The study is based on results on abstract equations with mappings acting from a partially ordered space to an arbitrary set (see [S. Benarab, Z. T. Zhukovskaya, E. S. Zhukovskiy, S. E. Zhukovskiy. On functional and differential inequalities and their applications to control problems // Differential Equations, 2020, 56:11, 1440–1451]).
Keywords:
implicit differential equation, boundary value problem, existence of solutions, estimates of solutions, Chaplygin's theorem on differential inequality.
Received: 06.04.2021
Document Type:
Article
UDC:517.922, 517.927.4
Language: Russian
Citation:
S. Benarab, “Two-sided estimates for solutions of boundary value problems for implicit differential equations”, Russian Universities Reports. Mathematics, 26:134 (2021), 216–220
\Bibitem{Ben21}
\by S.~Benarab
\paper Two-sided estimates for solutions of boundary value problems for implicit differential equations
\jour Russian Universities Reports. Mathematics
\yr 2021
\vol 26
\issue 134
\pages 216--220
\mathnet{http://mi.mathnet.ru/vtamu226}
\crossref{https://doi.org/10.20310/2686-9667-2021-26-134-216-220}
Linking options:
https://www.mathnet.ru/eng/vtamu226
https://www.mathnet.ru/eng/vtamu/v26/i134/p216
This publication is cited in the following 5 articles:
I. D. Serova, “Issledovanie kraevoi zadachi dlya differentsialnogo vklyucheniya”, Vestnik rossiiskikh universitetov. Matematika, 28:144 (2023), 395–405
E. S. Zhukovskiy, I. D. Serova, “On a Control Problem for a System of Implicit Differential Equations”, Differentsialnye uravneniya, 59:9 (2023), 1283
S. Benarab, E. A. Panasenko, “Ob odnom vklyuchenii s otobrazheniem, deistvuyuschim iz chastichno uporyadochennogo prostranstva v mnozhestvo s refleksivnym binarnym otnosheniem”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:3 (2022), 361–382
S. Benarab, “O teoreme Chaplygina dlya neyavnogo differentsialnogo uravneniya $n$-go poryadka”, Vestnik rossiiskikh universitetov. Matematika, 26:135 (2021), 225–233
G. E. Abduragimov, P. E. Abduragimova, M. M. Kuramagomedova, “O suschestvovanii i edinstvennosti polozhitelnogo resheniya kraevoi zadachi dlya nelineinogo obyknovennogo differentsialnogo uravneniya chetnogo poryadka”, Vestnik rossiiskikh universitetov. Matematika, 26:136 (2021), 341–347