Abstract:
Solution of a stress condition of stochastic heterogeneous plate problem was obtained on the basis of statistic linearization of determinative creep equation and by using a method of spectral representation of random functions. Stochasticity is introduced into determinative creep equation by random function of two variables. It was proved, that stochastic nonhomogeneities of material can lead to significant fluctuations of stress fields.
Citation:
A. P. Yankovskii, “On some properties of equal-stress problem solution reinforcement bending the metal-composite plates working in steady creep conditions”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(23) (2011), 62–73
\Bibitem{Yan11}
\by A.~P.~Yankovskii
\paper On some properties of equal-stress problem solution reinforcement bending the metal-composite plates working in~steady creep conditions
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2011
\vol 2(23)
\pages 62--73
\mathnet{http://mi.mathnet.ru/vsgtu922}
\crossref{https://doi.org/10.14498/vsgtu922}
Linking options:
https://www.mathnet.ru/eng/vsgtu922
https://www.mathnet.ru/eng/vsgtu/v123/p62
This publication is cited in the following 3 articles:
A. P. Yankovskii, “Equal-Stressed Reinforcement of Metal-Composite Plates in Transverse Bending at Steady-State Creep with Account of Weakened Resistance to In-Plane Shears”, Mechanics of Composite Materials, 52:1 (2016), 1–16
A. P. Yankovskii, “Edinstvennost resheniya v malom zadachi ravnonapryazhennogo armirovaniya metallokompozitnykh plastin,
rabotayuschikh v usloviyakh ustanovivsheisya polzuchesti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 4(37) (2014), 121–132
A. P. Yankovskii, “Primenenie metodov teorii vozmuschenii v zadache ravnonapryazhennogo armirovaniya izgibaemykh metallokompozitnykh plastin, rabotayuschikh v usloviyakh ustanovivsheisya polzuchesti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2(31) (2013), 17–35