Abstract:
In this article we consider Clifford's algebra over the field of real numbers of finite dimension. We define the operation of Hermitian conjugation for the elements of Clifford's algebra. This operation allows us to define the structure of Euclidian space on the Clifford algebra. We consider pseudo-orthogonal group and its subgroups — special pseudo-orthogonal, orthochronous, orthochorous and special orthochronous groups. As known, spinor groups are double covers of these orthogonal groups. We proved a theorem that relates the norm of element of spinor group with the minor of matrix of the orthogonal group.
Citation:
D. S. Shirokov, “Theorem on the norm of elements of spinor groups”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(22) (2011), 165–171
\Bibitem{Shi11}
\by D.~S.~Shirokov
\paper Theorem on the norm of elements of spinor groups
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2011
\vol 1(22)
\pages 165--171
\mathnet{http://mi.mathnet.ru/vsgtu875}
\crossref{https://doi.org/10.14498/vsgtu875}
Linking options:
https://www.mathnet.ru/eng/vsgtu875
https://www.mathnet.ru/eng/vsgtu/v122/p165
This publication is cited in the following 4 articles:
Natalya V. Yartseva, Natalia V. Dolganova, Igor Yu. Aleksanian, Albert H.-H. Nugmanov, “Technology Improvement of Minced Fish from Pond Fish and Quality Assessment of Culinary Products from It”, Food Industry, 7:2 (2022), 61
D. Shirokov, “Clifford algebras and their applications to Lie groups and spinors”, Geometry, Integrability and Quantization, 19 (2018), 11–53, arXiv: 1709.06608 [math-ph]
D. S. Shirokov, “Ispolzovanie obobschennoi teoremy Pauli dlya nechetnykh elementov algebry Klifforda
dlya analiza svyazei mezhdu spinornymi i ortogonalnymi gruppami proizvolnykh razmernostei”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(30) (2013), 279–287
D. S. Shirokov, “Lektsii po algebram Klifforda i spinoram”, Lekts. kursy NOTs, 19, MIAN, M., 2012, 3–179