Abstract:
Solution of a stress condition of stochastic heterogeneous plate problem was obtained on the basis of statistic linearization of determinative creep equation and by using a method of spectral representation of random functions. Stochasticity is introduced into determinative creep equation by random function of two variables. It was proved, that stochastic nonhomogeneities of material can lead to significant fluctuations of stress fields.
Citation:
N. N. Popov, L. V. Kovalenko, M. A. Yashin, “Solution of plane nonlinear stochastic problem with spectral representation method”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(19) (2009), 99–106
\Bibitem{PopKovYas09}
\by N.~N.~Popov, L.~V.~Kovalenko, M.~A.~Yashin
\paper Solution of plane nonlinear stochastic problem with spectral representation method
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2009
\vol 2(19)
\pages 99--106
\mathnet{http://mi.mathnet.ru/vsgtu709}
\crossref{https://doi.org/10.14498/vsgtu709}
Linking options:
https://www.mathnet.ru/eng/vsgtu709
https://www.mathnet.ru/eng/vsgtu/v119/p99
This publication is cited in the following 3 articles:
N. N. Popov, O. O. Chernova, “Metod resheniya nelineinoi stokhasticheskoi zadachi polzuchesti s uchetom povrezhdennosti materiala”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 3(32) (2013), 69–76
N. N. Popov, O. O. Chernova, “Metod resheniya zadachi o chistom sdvige stokhasticheski neodnorodnoi ploskosti v usloviyakh ustanovivsheisya polzuchesti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 4(29) (2012), 97–105
N. N. Popov, O. O. Chernova, “Reshenie nelineinoi zadachi polzuchesti dlya stokhasticheski neodnorodnoi ploskosti na osnove vtorogo priblizheniya metoda malogo parametra”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 4(25) (2011), 50–58