Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2025, Volume 29, Number 1, Pages 130–158
DOI: https://doi.org/10.14498/vsgtu2131
(Mi vsgtu2131)
 

Mathematical Modeling, Numerical Methods and Software Complexes

Finite approximation methods for two-dimensional sets and their application to geometric optimization problems

V. N. Nefedova, F. V. Svoykinb, B. A. Garibyana, A. V. Ryapukhina, N. S. Korolkob

a Moscow Aviation Institute (National Research University), Moscow, 125993, Russian Federation
b Saint Petersburg State Forest Technical University under name of S. M. Kirov, Saint Petersburg, 194021, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: This study investigates the problem of approximating closed bounded sets in two-dimensional real space by finite subsets with a given accuracy in the Hausdorff metric. The main focus is on developing an effective approximation method for the class of sets defined by stepwise systems of inequalities.
The proposed method is based on constructing special grid structures that allow controlling the approximation accuracy through a parameter τ>0. Corresponding theoretical statements about the properties of such approximations are proved.
The problem of finding an optimal piecewise-linear path between two points with a single turn under angle constraints is examined in detail. The developed methods are applicable for solving various geometric optimization problems.
Keywords: mathematical optimization, discrete approximation of closed sets, Hausdorff topology, angular path constraint
Received: November 12, 2024
Revised: January 23, 2025
Accepted: January 27, 2025
First online: March 25, 2025
Bibliographic databases:
Document Type: Article
UDC: 519.6 + 514.177.2
MSC: 52A10, 52A27, 68U05
Language: Russian
Citation: V. N. Nefedov, F. V. Svoykin, B. A. Garibyan, A. V. Ryapukhin, N. S. Korolko, “Finite approximation methods for two-dimensional sets and their application to geometric optimization problems”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:1 (2025), 130–158
Citation in format AMSBIB
\Bibitem{NefSvoGar25}
\by V.~N.~Nefedov, F.~V.~Svoykin, B.~A.~Garibyan, A.~V.~Ryapukhin, N.~S.~Korolko
\paper Finite approximation methods for two-dimensional sets and their application to geometric optimization problems
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2025
\vol 29
\issue 1
\pages 130--158
\mathnet{http://mi.mathnet.ru/vsgtu2131}
\crossref{https://doi.org/10.14498/vsgtu2131}
\edn{https://elibrary.ru/DMJLWE}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu2131
  • https://www.mathnet.ru/eng/vsgtu/v229/i1/p130
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:52
    Full-text PDF :21
    References:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025