Loading [MathJax]/jax/output/SVG/config.js
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2024, Volume 28, Number 4, Pages 759–772
DOI: https://doi.org/10.14498/vsgtu2098
(Mi vsgtu2098)
 

Mathematical Modeling, Numerical Methods and Software Complexes

Exact solution to the velocity field description for Couette–Poiseulle flows of binary liquids

V. V. Bashurova, N. V. Burmashevabc, E. Yu. Prosviryakovabc

a Ural State University of Railway Transport, Ekaterinburg, 620034, Russian Federation
b Institute of Engineering Science, Ural Branch of RAS, Ekaterinburg, 620049, Russian Federation.
c Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg, 620002, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: Exact solution of the Oberbeck–Boussinesq equations for describing steady flows of binary Poiseuille-type fluids is proposed and studied. The fluid motion is considered in the infinite horizontal layer. Shear flows are described by overdetermined system of equations. Nontrivial exact solution for the Oberbeck–Boussinesq system exists in the class of velocities with two vector components and depends only on the transverse coordinate. This structure of the velocity vector coordinates ensures naturally the fulfillment of the continuity equation as an “extra” equation. The pressure field, the temperature field, and the concentration field of the dissolved substance are described by linear functions of horizontal (longitudinal) coordinates with coefficients that functionally depend on the third coordinate. Fluid layer, as it is shown, can have two points where the velocity becomes zero. In this case, the spiral flow is realized (the hodograph of the velocity vector has a turning point).
Keywords: viscous fluid, binary fluid, Couette flow, Poiseuille flow, convection, diffusion, exact solution, counterflows, overdeterminated system
Received: June 11, 2024
Revised: November 25, 2024
Accepted: November 29, 2024
First online: December 25, 2024
Bibliographic databases:
Document Type: Article
UDC: 517.958:531.32
MSC: 76D05, 35G20
Language: English
Citation: V. V. Bashurov, N. V. Burmasheva, E. Yu. Prosviryakov, “Exact solution to the velocity field description for Couette–Poiseulle flows of binary liquids”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:4 (2024), 759–772
Citation in format AMSBIB
\Bibitem{BasBurPro24}
\by V.~V.~Bashurov, N.~V.~Burmasheva, E.~Yu.~Prosviryakov
\paper Exact solution to the velocity field description for~Couette--Poiseulle flows of binary liquids
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2024
\vol 28
\issue 4
\pages 759--772
\mathnet{http://mi.mathnet.ru/vsgtu2098}
\crossref{https://doi.org/10.14498/vsgtu2098}
\edn{https://elibrary.ru/GJRNAA}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu2098
  • https://www.mathnet.ru/eng/vsgtu/v228/i4/p759
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :33
    References:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025