Loading [MathJax]/jax/output/CommonHTML/jax.js
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2024, Volume 28, Number 3, Pages 426–444
DOI: https://doi.org/10.14498/vsgtu2097
(Mi vsgtu2097)
 

This article is cited in 1 scientific paper (total in 1 paper)

Differential Equations and Mathematical Physics

Approximation of the solution of transport-diffusion equation in Hölder space

A. Nemdilia, F. Korichib, H. Fujita Yashimaa

a École Normale Supérieure El Katiba Assia Djebar Constantine, Constantine, 25000, Algeria
b École Normale Supérieure de Kouba, Alger, 16050, Algeria (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: In this paper, approximate solutions for the transport-diffusion equation in Rd and their limit function are considered and it is proved that the limit function belongs to the Hölder space corresponding to the regularity of given functions and satisfies the equation. More precisely, we construct these approximate solutions by using the heat kernel and the translation corresponding to the transport on each step of time discretization. Under the assumption of the boundedness of given functions and their partial derivatives with respect to the space variables up to the m-th order (m2) and of the α-Hölder continuity of their m-th derivatives (2/3<α1; if α=1, it means the Lipschitz condition), we first establish suitable estimates of the approximate solutions and then, using these estimates, we prove their convergence to a function which satisfies the equation and the α-Hölder continuity of the m-th derivatives with respect to the space variables of the limit function. Note that these estimates do not depend on the coefficient of diffusion, so they can be used even in the case where the coefficient of diffusion tends to 0.
Keywords: transport-diffusion equation, approximate solutions, Hölder space
Received: June 1, 2024
Revised: October 3, 2024
Accepted: October 21, 2024
First online: November 11, 2024
Document Type: Article
UDC: 517.956.4
MSC: 35K58, 35K15
Language: Russian
Citation: A. Nemdili, F. Korichi, H. Fujita Yashima, “Approximation of the solution of transport-diffusion equation in Hölder space”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:3 (2024), 426–444
Citation in format AMSBIB
\Bibitem{NemKorFuj24}
\by A.~Nemdili, F.~Korichi, H.~Fujita Yashima
\paper Approximation of the solution of transport-diffusion equation in H\"older space
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2024
\vol 28
\issue 3
\pages 426--444
\mathnet{http://mi.mathnet.ru/vsgtu2097}
\crossref{https://doi.org/10.14498/vsgtu2097}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu2097
  • https://www.mathnet.ru/eng/vsgtu/v228/i3/p426
  • This publication is cited in the following 1 articles:
    1. Lynda Taleb, Rabah Gherdaoui, “Approximation by the heat kernel of the solution to the transport-diffusion equation with the time-dependent diffusion coefficient”, MATH, 10:2 (2025), 2392  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:146
    Full-text PDF :40
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025