Loading [MathJax]/jax/output/SVG/config.js
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2023, Volume 27, Number 1, Pages 23–49
DOI: https://doi.org/10.14498/vsgtu1961
(Mi vsgtu1961)
 

This article is cited in 1 scientific paper (total in 1 paper)

Differential Equations and Mathematical Physics

A set of Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators

R. S. Saks

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa, 450077, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: We will consider the scale of the Sobolev spaces $\mathbf{H}^{m}(G)$ vector fields in a bounded domain $G$ of $\mathbb{R}^3$ with a smooth boundary of $\Gamma$. The gradient-of-divergence and the rotor-of-rotor operators ($\nabla \,\text{div}$ and $ \text{rot}^2$) and their powers are analogous to the scalar operator $\Delta^m$ in $\mathbb{R}^3$. They generate spaces $ \mathbf{A}^{2k}(G)$ and $\mathbf{W}^m(G)$ potential and vortex fields; where the numbers $k$, $m>0$ are integers.
It is proven that $ \mathbf{A}^{2k}(G)$ and $\mathbf{W}^m(G)$ are projections of Sobolev spaces $ \mathbf{H}^{2k}(G) $ and $ \mathbf{H}^{m}(G)$ in subspaces $\mathcal{A}$ and $\mathcal{B}$ in $\mathbf{L}_{2}(G)$. Their direct sums $ \mathbf{A}^{2k}(G) \oplus \mathbf{W}^m(G)$ form a network of spaces. Its elements are classes $ \mathbf{C}(2k, m)\equiv \mathbf{A}^{2k}\oplus \mathbf{W}^m$.
We consider at the properties of the spaces $\mathbf{A}^{-m}$ and $\mathbf{W}^{-m}$ and proved their compliance with the spaces $\mathbf{A}^{m}$ and $\mathbf{W}^{m}$. We also consider at the direct sums of $ \mathbf{A}^{k}(G)\oplus \mathbf{W}^m(G)$ for any integer numbers $k$ and $m>0$. This completes the construction of the $\{\mathbf{C}(k, m)\}_{k,m}$ network.
In addition, an orthonormal basis has been constructed in the space $\mathbf{L}_{2}(G)$. It consists of the orthogonal subspace $\mathcal{A}$ and $\mathcal{B}$ bases. Its elements are eigenfields of the operators $\nabla\,\text{div}$ and $\text{rot}$. The proof of their smoothness is an important stage in the theory developed.
The model boundary value problems for the operators $\text{rot}+\lambda I$, $\nabla\,\text{div}+\lambda I $, their sum, and also for the Stokes operator have been investigated in the network $\{\mathbf{C}(k, m)\}_{k,m}$. Solvability conditions are obtained for the model problems considered.
Keywords: Sobolev spaces, gradient operator, divergence operator, curl operator, elliptic boundary value problems, spectral problems.
Received: October 11, 2022
Revised: February 9, 2023
Accepted: March 13, 2023
First online: March 24, 2023
Bibliographic databases:
Document Type: Article
UDC: 517.984.5
MSC: 35P05, 35P15, 47A10
Language: Russian
Citation: R. S. Saks, “A set of Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:1 (2023), 23–49
Citation in format AMSBIB
\Bibitem{Sak23}
\by R.~S.~Saks
\paper A set of Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2023
\vol 27
\issue 1
\pages 23--49
\mathnet{http://mi.mathnet.ru/vsgtu1961}
\crossref{https://doi.org/10.14498/vsgtu1961}
\edn{https://elibrary.ru/TXBBDP}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1961
  • https://www.mathnet.ru/eng/vsgtu/v227/i1/p23
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:292
    Full-text PDF :150
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025