Loading [MathJax]/jax/output/SVG/config.js
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2017, Volume 21, Number 1, Pages 7–41
DOI: https://doi.org/10.14498/vsgtu1529
(Mi vsgtu1529)
 

This article is cited in 11 scientific papers (total in 11 papers)

Differential Equations and Mathematical Physics

On a speed of solutions stabilization of the Cauchy problem for the Carleman equation with periodic initial data

S. A. Dukhnovskii

National Research Moscow State University of Civil Engineering, Moscow, 129337, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: This article explores a one-dimensional system of equations for the discrete model of a gas (Carleman system of equations). The Carleman system is the Boltzmann kinetic equation of a model one-dimensional gas consisting of two particles. For this model, momentum and energy are not retained. On the example of the Carleman model, the essence of the Boltzmann equation can be clearly seen. It describes a mixture of “competing” processes: relaxation and free movement. We prove the existence of a global solution of the Cauchy problem for the perturbation of the equilibrium state with periodic initial data. For the first time we calculate the stabilization speed to the equilibrium state (exponential stabilization).
Keywords: kinetic equation, Carleman equation, Fourier solution, equilibrium state, secular terms, generalized solution.
Received: January 21, 2017
Revised: February 25, 2017
Accepted: March 13, 2017
First online: May 11, 2017
Bibliographic databases:
Document Type: Article
UDC: 517.958:531.332
MSC: 35L45, 35L60, 35Q20
Language: Russian
Citation: S. A. Dukhnovskii, “On a speed of solutions stabilization of the Cauchy problem for the Carleman equation with periodic initial data”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:1 (2017), 7–41
Citation in format AMSBIB
\Bibitem{Duk17}
\by S.~A.~Dukhnovskii
\paper On a speed of solutions stabilization of the Cauchy problem for the Carleman equation with periodic initial data
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2017
\vol 21
\issue 1
\pages 7--41
\mathnet{http://mi.mathnet.ru/vsgtu1529}
\crossref{https://doi.org/10.14498/vsgtu1529}
\elib{https://elibrary.ru/item.asp?id=29245095}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1529
  • https://www.mathnet.ru/eng/vsgtu/v221/i1/p7
  • This publication is cited in the following 11 articles:
    1. Vasil'eva Olga, ADVANCES IN SUSTAINABLE CONSTRUCTION MATERIALS, 2759, ADVANCES IN SUSTAINABLE CONSTRUCTION MATERIALS, 2023, 030029  crossref
    2. Olga Vasil'eva, Anastasia Suvorova, CONSTRUCTION: THE FORMATION OF LIVING ENVIRONMENT: FORM-2022, 2791, CONSTRUCTION: THE FORMATION OF LIVING ENVIRONMENT: FORM-2022, 2023, 040006  crossref
    3. S. A. Dukhnovskii, “Painlevé Test and a Self-Similar Solution of the Kinetic Model”, J Math Sci, 275:5 (2023), 613  crossref
    4. Evgeny Radkevich, Olga Vasil'eva, Georgiy Filippov, Lecture Notes in Civil Engineering, 282, Proceedings of FORM 2022, 2023, 65  crossref
    5. S. A. Dukhnovsky, “A self–similar solution and the tanh–function method for the kinetic Carleman system”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2022, no. 1, 99–110  mathnet  crossref  mathscinet
    6. S. A. Dukhnovskii, “Global existence theorems of a solution of the Cauchy problem for systems of the kinetic Carleman and Godunov–Sultangazin equations”, Eurasian Math. J., 12:1 (2021), 97–102  mathnet  crossref
    7. S. A. Dukhnovskii, “On the Rate of Stabilization of Solutions to the Cauchy Problem for the Godunov–Sultangazin System with Periodic Initial Data”, J Math Sci, 259:3 (2021), 349  crossref
    8. S. A. Dukhnovskii, “Resheniya sistemy Karlemana cherez razlozhenie Penleve”, Vladikavk. matem. zhurn., 22:4 (2020), 58–67  mathnet  crossref  elib
    9. S. A. Dukhnovskii, “Painlevé test and a self-similar solution of the kinetic model”, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 176 (2020), 91–94  mathnet  mathnet  crossref
    10. S. A. Dukhnovskii, “O skorosti stabilizatsii reshenii zadachi Koshi dlya sistemy uravnenii Godunova—Sultangazina s periodicheskimi nachalnymi dannymi”, Materialy IV Mezhdunarodnoi nauchnoi konferentsii “Aktualnye problemy prikladnoi matematiki”. Kabardino-Balkarskaya respublika, Nalchik, Prielbruse, 22–26 maya 2018 g. Chast I, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 165, VINITI RAN, M., 2019, 88–113  mathnet  crossref  mathscinet  elib
    11. S. A. Dukhnovskii, “Asymptotic stability of equilibrium states for Carleman and Godunov–Sultangazin systems of equations”, Moscow University Mathematics Bulletin, 74:6 (2019), 246–248  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:737
    Full-text PDF :332
    References:104
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025