Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2013, Issue 1(30), Pages 82–89
DOI: https://doi.org/10.14498/vsgtu1186
(Mi vsgtu1186)
 

This article is cited in 3 scientific papers (total in 3 papers)

Procedings of the 3nd International Conference "Mathematical Physics and its Applications"
Equations of Mathematical Physics

Solutions of anisotropic parabolic equations with double non-linearity in unbounded domains

L. M. Kozhevnikova, A. A. Leont'ev

Sterlitamak Branch of Bashkir State University, Sterlitamak, 453103, Russia
Full-text PDF (178 kB) Citations (3)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: This work is devoted to some class of parabolic equations of high order with double nonlinearity which can be represented by a model equation
t(|u|k2u)=nα=1(1)mα1mαxmαα[|mαuxmαα|pα2mαuxmαα],m1,,mnN,pnp1>k,k>1.
For the solution of the first mixed problem in a cylindrical domain D=(0,) ×Ω,ΩRn, n2, with homogeneous Dirichlet boundary condition and finite initial function the highest rate of decay established as t. Earlier upper estimates were obtained by the authors for anisotropic equation of the second order and prove their accuracy.
Keywords: anisotropic equation, doubly nonlinear parabolic equations, existence of strong solution, decay rate of solution.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-0081
Original article submitted 15/XI/2012
revision submitted – 10/III/2013
Bibliographic databases:
Document Type: Article
UDC: 517.957
MSC: 35K35, 35K61
Language: Russian
Citation: L. M. Kozhevnikova, A. A. Leont'ev, “Solutions of anisotropic parabolic equations with double non-linearity in unbounded domains”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013), 82–89
Citation in format AMSBIB
\Bibitem{KozLeo13}
\by L.~M.~Kozhevnikova, A.~A.~Leont'ev
\paper Solutions of anisotropic parabolic equations with double non-linearity in unbounded domains
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2013
\vol 1(30)
\pages 82--89
\mathnet{http://mi.mathnet.ru/vsgtu1186}
\crossref{https://doi.org/10.14498/vsgtu1186}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1186
  • https://www.mathnet.ru/eng/vsgtu/v130/p82
  • This publication is cited in the following 3 articles:
    1. È. R. Andriyanova, F. Kh. Mukminov, “Existence and qualitative properties of a solution of the first mixed problem for a parabolic equation with non-power-law double nonlinearity”, Sb. Math., 207:1 (2016), 1–40  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. E. R. Andriyanova, “Estimates of decay rate for solution to parabolic equation with non-power nonlinearities”, Ufa Math. J., 6:2 (2014), 3–24  mathnet  crossref  elib
    3. E. R. Andriyanova, F. Kh. Mukminov, “Existence of solution for parabolic equation with non-power nonlinearities”, Ufa Math. J., 6:4 (2014), 31–47  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:522
    Full-text PDF :232
    References:62
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025