Abstract:
Parametric investigation of structured liquid Couette flow in a plain gap is presented. Bifurcation conditions of steady non-uniform solutions are defined from unsteady uniform ones in the nonmonotonic region of rheological curve. Relevant bifurcation diagrams are plotted. The coincidence between the steady-state solution and the solution of unstable problem is noted.
Keywords:
Couette flow, structed liquid, bifurcation, nonmonotonic region of rheological curve, parametric investigation.
Original article submitted 16/XI/2011 revision submitted – 17/IV/2012
Citation:
N. A. Belyaeva, K. P. Kuznetsov, “Analysis of a nonlinear dynamic model of the Couette flow for structured liquid in a flat gap”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(27) (2012), 85–92
\Bibitem{BelKuz12}
\by N.~A.~Belyaeva, K.~P.~Kuznetsov
\paper Analysis of a nonlinear dynamic model of the Couette flow for structured liquid in a flat gap
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2012
\vol 2(27)
\pages 85--92
\mathnet{http://mi.mathnet.ru/vsgtu1018}
\crossref{https://doi.org/10.14498/vsgtu1018}
\zmath{https://zbmath.org/?q=an:1326.76003}
Linking options:
https://www.mathnet.ru/eng/vsgtu1018
https://www.mathnet.ru/eng/vsgtu/v127/p85
This publication is cited in the following 2 articles:
S. N. Aristov, E. Yu. Prosviryakov, “Unsteady layered vortical fluid flows”, Fluid Dynamics, 51:2 (2016), 148–154
S. N. Aristov, E. Yu. Prosviryakov, “Large-scale flows of viscous incompressible vortical fluid”, Russian Aeronautics (Iz VUZ), 58:4 (2015), 413–418