Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2011, Volume 11, Issue 1, Pages 87–98 (Mi vngu72)  

This article is cited in 15 scientific papers (total in 15 papers)

The Unilateral Contact Problem for Two Plates One of them Containing a Rigid Inclusion

T. A. Rotanova

M. A. Lavrent'ev Institute of Hydrodynamics, Novosibirsk
References:
Abstract: This paper deals with the unilateral contact problem for two elastic plates located at a given angle to each other. One of the plates contains a rigid inclusion and is deformed in its plane with the other one being vertically deformed. Assuming that the solution is smooth, the differential statement being equivalent to the variational formulation is justified. We analyse different configurations of the rigid inclusion. The problem with rigid inclusion is shown to be obtained as the limiting one of the family of elastic problems.
Keywords: contact problem, variational inequality, rigid inclusion, elastic plates.
Received: 19.03.2010
English version:
Journal of Mathematical Sciences, 2013, Volume 188, Issue 4, Pages 452–462
DOI: https://doi.org/10.1007/s10958-012-1142-3
Document Type: Article
UDC: 517.95
Language: Russian
Citation: T. A. Rotanova, “The Unilateral Contact Problem for Two Plates One of them Containing a Rigid Inclusion”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:1 (2011), 87–98; J. Math. Sci., 188:4 (2013), 452–462
Citation in format AMSBIB
\Bibitem{Rot11}
\by T.~A.~Rotanova
\paper The Unilateral Contact Problem for Two Plates One of them Containing a~Rigid Inclusion
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2011
\vol 11
\issue 1
\pages 87--98
\mathnet{http://mi.mathnet.ru/vngu72}
\transl
\jour J. Math. Sci.
\yr 2013
\vol 188
\issue 4
\pages 452--462
\crossref{https://doi.org/10.1007/s10958-012-1142-3}
Linking options:
  • https://www.mathnet.ru/eng/vngu72
  • https://www.mathnet.ru/eng/vngu/v11/i1/p87
  • This publication is cited in the following 15 articles:
    1. Alexander Khludnev, “T-shape inclusion in elastic body with a damage parameter”, Journal of Computational and Applied Mathematics, 393 (2021), 113540  crossref
    2. Alexander Khludnev, Tatyana Popova, “Equilibrium problem for elastic body with delaminated T-shape inclusion”, Journal of Computational and Applied Mathematics, 376 (2020), 112870  crossref
    3. V.A. Krysko, J. Awrejcewicz, I.V. Papkova, O.A. Saltykova, A.V. Krysko, “Chaotic Contact Dynamics of Two Microbeams under Various Kinematic Hypotheses”, International Journal of Nonlinear Sciences and Numerical Simulation, 20:3-4 (2019), 373  crossref
    4. A. I. Furtsev, “A contact problem for a plate and a beam in presence of adhesion”, J. Appl. Industr. Math., 13:2 (2019), 208–218  mathnet  mathnet  crossref  crossref  scopus
    5. V. A. Puris, “The conjugation problem for thin elastic and rigid inclusions in an elastic body”, J. Appl. Industr. Math., 11:3 (2017), 444–452  mathnet  crossref  crossref  elib
    6. A. M. Khludnev, T. S. Popova, “On the mechanical interplay between Timoshenko and semirigid inclusions embedded in elastic bodies”, Z Angew Math Mech, 97:11 (2017), 1406  crossref
    7. AM Khludnev, L Faella, TS Popova, “Junction problem for rigid and Timoshenko elastic inclusions in elastic bodies”, Mathematics and Mechanics of Solids, 22:4 (2017), 737  crossref
    8. A.M. Khludnev, T.S. Popova, “Timoshenko inclusions in elastic bodies crossing an external boundary at zero angle”, Acta Mechanica Solida Sinica, 30:3 (2017), 327  crossref
    9. Luisa Faella, Alexander Khludnev, “Junction problem for elastic and rigid inclusions in elastic bodies”, Math Methods in App Sciences, 39:12 (2016), 3381  crossref
    10. Alexander Khludnev, Tatiana Popova, “Junction problem for rigid and semirigid inclusions in elastic bodies”, Arch Appl Mech, 86:9 (2016), 1565  crossref
    11. A. M. Khludnev, “Optimalnoe upravlenie vklyucheniyami v uprugom tele, peresekayuschimi vneshnyuyu granitsu”, Sib. zhurn. industr. matem., 18:4 (2015), 75–87  mathnet  crossref  mathscinet  elib
    12. A.M. Khludnev, “Optimal control of a thin rigid inclusion intersecting the boundary of an elastic body”, Journal of Applied Mathematics and Mechanics, 79:5 (2015), 493  crossref
    13. A. M. Khludnev, “On an equilibrium problem for a two-layer elastic body with a crack”, J. Appl. Industr. Math., 7:3 (2013), 370–379  mathnet  crossref  mathscinet
    14. Khludnev A., “Contact problems for elastic bodies with rigid inclusions”, Quart. Appl. Math., 70:2 (2012), 269–284  crossref  mathscinet  zmath  isi
    15. Khludnev A., “Thin rigid inclusions with delaminations in elastic plates”, Eur. J. Mech. A Solids, 32 (2012), 69–75  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
    Statistics & downloads:
    Abstract page:343
    Full-text PDF :106
    References:81
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025