Abstract:
Optimal system of subalgebras for one algebra Lie is constructed. This algebra Lie is direct sum of algebra of affine transformations group Aff(R) and algebra of projective transformations group SL(2,R). Some invariant solutions for one nonlinear partial differential equation are found.
Keywords:
symmetry group, Lie algebra, optimal system of subalgebras, invariant solutions.
Citation:
A. V. Panov, “Optimal system of subalgebras for sum of two ideals aff(R)⊕sl(2,R)”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15:2 (2015), 90–96; J. Math. Sci., 215:4 (2016), 537–542
\Bibitem{Pan15}
\by A.~V.~Panov
\paper Optimal system of subalgebras for sum of two ideals $\mathfrak{aff}(\mathbb{R})\oplus \mathfrak{sl}(2,\mathbb{R})$
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2015
\vol 15
\issue 2
\pages 90--96
\mathnet{http://mi.mathnet.ru/vngu370}
\crossref{https://doi.org/10.17377/PAM.2015.15.207}
\transl
\jour J. Math. Sci.
\yr 2016
\vol 215
\issue 4
\pages 537--542
\crossref{https://doi.org/10.1007/s10958-016-2858-2}
Linking options:
https://www.mathnet.ru/eng/vngu370
https://www.mathnet.ru/eng/vngu/v15/i2/p90
This publication is cited in the following 1 articles:
Pabitra Kumar Pradhan, Dia Zeidan, Manoj Pandey, “Multi-dimensional optimal system and conservation laws for Chaplygin gas Cargo-LeRoux model”, Journal of Mathematical Analysis and Applications, 521:1 (2023), 126912