Abstract:
In a cylindrical domain Q⊆Rn+1 the first boundary value problem for semilinear parabolic equation with changing direction of time is considered. It is developed stationary Galerkin method for the study of boundary value problem. It is proved the existence and uniqueness of solution of the first boundary value problem in the space W2,12(Q). Error estimation for stationary Galerkin method is obtained in the norm of the space W1,02(Q) through eigenvalues of selfadjoint spectral problem for the elliptic equation of second order.
Citation:
E. S. Efimova, I. E. Egorov, M. S. Kolesova, “Error Estimation for Stationary Galerkin Method for Semilinear Parabolic Equation with Changing Direction of Time”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:3 (2014), 43–49; J. Math. Sci., 213:6 (2016), 838–843
\Bibitem{EfiEgoKol14}
\by E.~S.~Efimova, I.~E.~Egorov, M.~S.~Kolesova
\paper Error Estimation for Stationary Galerkin Method for Semilinear Parabolic Equation with Changing Direction of Time
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2014
\vol 14
\issue 3
\pages 43--49
\mathnet{http://mi.mathnet.ru/vngu344}
\transl
\jour J. Math. Sci.
\yr 2016
\vol 213
\issue 6
\pages 838--843
\crossref{https://doi.org/10.1007/s10958-016-2745-x}
Linking options:
https://www.mathnet.ru/eng/vngu344
https://www.mathnet.ru/eng/vngu/v14/i3/p43
This publication is cited in the following 4 articles:
V E Fedorov, “Boundary value problem for a higher order equation with changing time direction”, J. Phys.: Conf. Ser., 1141 (2018), 012108
A. I. Kozhanov, “Boundary value problems for a class of nonlocal integro-differential equations with degeneration”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 2017, no. 4, 19–24
Ivan E. Egorov, Valery E. Fedorov, Irina M. Tikhonova, Elena S. Efimova, AIP Conference Proceedings, 1903, 2017, 020011
I. E. Egorov, E. S. Efimova, “A modified Galerkin method for semilinear parabolic equation with changing time direction”, J. Math. Sci., 228:4 (2018), 372–379